Overview of recent results on open heavy flavour production (mainly) with ALICE at the LHC

张晓明

华中师范大学

原子核结构与相对论重离子碰撞前沿交叉研讨会 31 July – 6 Aug 2023, Dalian, China

Heavy-ion collisions

< 1 fm/*c*

~10¹⁵ fm/*c*

Heavy-ion collisions

Quark-gluon plasma

< 1 fm/*c*

QCD phase diagram

Signatures of the QGP

Heavy-ion collisions probe the stronglyinteracting matter — the quark-gluon plasma (QGP) under extreme conditions of high temperature and energy density

Hard probes created at initial stage of the collision

QGP tomography

Soft probes created in the "fireball" Fingerprint of the QGP evolution

Heavy quarks (charm and beauty): produced at the early stage of the collisions before the QGP creation

$$R_{\rm AA}(p_{\rm T}) = \frac{{\rm d}N_{\rm AA}/{\rm d}p_{\rm T}}{< T_{\rm AA} > {\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}} \frac{\rm QCD\ medium}{\rm QCD\ vacuum}$$

Heavy quarks (charm and beauty): produced at the early stage of the collisions before the QGP creation

Collective expansion

Anisotropic flow

Results in complex azimuthal structure of final state particles

Heavy quarks (charm and beauty): produced at the early stage of the collisions before the QGP creation

Collective expansion

→ Radial flow

 \rightarrow Push low p_{T} particles toward

intermediate p_{T}

 p_0 : initial momentum β : flow velocity *m*: particle mass

- More pronounced in central collisions
- ➡ Mass dependence

Heavy quarks (charm and beauty): produced at the early stage of the

Charm quark energy loss

W/oscoalescence Large deviation from data

- Hadronization LGR w/o coalescence
 Hadronization Nia Goalescence is important ^{0.25} to interpret data 0.20
 - 0.15

W/o¹ radiative energy loss Reasonably

- describe data in $p_T < 5$ GeV/c, but largely
- overestimate data at high p_T
 - = 0.05 = Radiative energy loss is dominant at high
 - p⁺, while e^{off} p⁺ p
 - predominant at low and intermediate p_{T}

Charm quark transport

Consistent with strong suppression resulted by large energy loss

Charm quark transport

- Use to estimate the spatial diffusion coefficient Ds

• Most charm quark transport models able to describe both the R_{AA} and v_2

Charm quark transport


```
IQCD, D. Banerjee et al., PRD 85 (2012) 014510
```

STAR, PRL 118 (2017) 212301

Diffusion coefficient $D_{\rm S}$

- Almost independent of quark mass
- Characterization of the transport properties of the medium
- Constrains the specific shear viscosity η/s

 $2\pi D_s T_c$ at $T_c \approx 155$ MeV

18

16

20

• $1.5 < 2\pi D_s(T) < 4.5$, $\tau_{charm} = (m_{charm} / T) D_s(T) = 3-9 \text{ fm/} c < \tau_{medium} \approx 10 \text{ fm/} c$ Indicate charm may thermalize in the medium

Charm quark hadronization

- Enhanced Λ_c/D^0 ratio in Pb–Pb w.r.t. pp suggest interplay between recombination and radial flow

• Hints of enhanced D_s^+/D^0 ratio at intermediate p_T in Pb–Pb w.r.t. pp — support charm hadronization via recombination

Beauty quark transport

- sector ($2\pi D_s \approx 1.5-4.5$ for charm)
- What is thermalization DOF of beauty in the QGP medium?

Non-prompt

Charm guark radiation in vacuum

dead-cone effect

 Direct observation for charm quarks in pp — QCD vacuum

One of fundamental properties of QCD: suppression of gluon emissions within cone $\theta < m_Q / E$

Charm quark radiation in vacuum

dead-cone effect

 Direct observation for charm quarks in pp — QCD vacuum

• Whether is it still validated in QCD medium? Mass dependent heavy quark radiative energy loss $\Delta E_{\text{beauty}} < \Delta E_{\text{charm}} \Rightarrow R_{AA}(\text{beauty}) > R_{AA} (\text{charm})$

- One of fundamental properties of QCD: suppression of gluon emissions within cone $\theta < m_Q / E$

Nass dependent RAA

Non-prompt D mesons are less suppressed than prompt D mesons $R_{AA}(beauty) > R_{AA}(charm) \Rightarrow \Delta E_{beauty} < \Delta E_{charm}$ (?)

ALICE, Pb–Pb, $s_{NN} = 5.02 \text{ TeV}$ 30–50%, *|y*|<0.5 non-prompt D⁰ prompt D⁰

open markers: p_{τ} extrapolated pp reference

 $p_{\tau}(\text{GeV}/c)$ 10

Nass dependent RAA

Non-prompt D mesons are less suppressed than prompt D mesons $R_{AA}(beauty) > R_{AA}(charm) \Rightarrow \Delta E_{beauty} < \Delta E_{charm}$ (?)

Beauty quark hadronization

• Hints of B_{s^0} and B_{c^+} enhancement in Pb–Pb collisions

Indicate recombination during beauty quark hadronization

Λ_{c} +/D⁰ ratio in pp collisions

- Λ_c / D^o ratio shows a more substantial

Λ_{c} +/D^o ratio in pp collisions

ALICE Phys. Rev. C107 (2023) 064901

- Catania Thermalised system of gluons, light quarks and antiquarks (QGP), hadronisation via coalescence and fragmentation
- SH model + RQM Hadronisation driven by statistical weights govern by hadron masses, feed-down from excited baryon states predicted by RQM
- QCM Pure coalescence model, charm is combined with co-moving light antiquark or two quarks

Heavy flavour production

- Production cross section of heavy-flavour hadrons is typically described by a factorization framework
- Fragmentation functions are constrained from e⁻e⁺ and ep measurements, assuming they are applicable universally in hadronic collisions

	_	
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
	_	
1		

Heavy flavour production

- Production cross section of heavy-flavour hadrons is typically described by a factorization framework
- Fragmentation functions are constrained from e⁻e⁺ and ep measurements, assuming they are applicable universally in hadronic collisions

$$\frac{\mathrm{d}\sigma^{\mathrm{pp}\to\mathrm{H}_{\mathrm{Q}}}}{\mathrm{d}p_{\mathrm{T}}} = \sum_{ij} f_i(x_1,\mu_{\mathrm{F}}) f_j(x_2,\mu_{\mathrm{F}}) \oplus \begin{bmatrix} \mathrm{d}\sigma^{ij} \\ \mathrm{d}p \\ \mathrm{d}p \end{bmatrix}$$

$$\frac{\mathrm{d}\sigma^{ij}}{\mathrm{d}p}$$

$$\frac{\mathrm{d}\sigma^{ij}}{\mathrm{d}p}$$

ection (pQCD)

scattering cross Fragmentation function (Hadronization)

v2 of heavy quarks in p-Pb

- and forward/backward rapidities in p-Pb collisions

 - ➡ Is it correlated with the hadronization behaviors?

• Significant v_2 coefficient of heavy flavour particles is observed at both midrapidity

Do heavy quarks undergo hydro-like evolution in small collision systems?

Next step – exited states (?)

- No significant multiplicity dependence on $D_{s1}+/D_{s}+$ ratio, reproduced by SHM

• Hints of decreasing trend of D_{s2}^* / D_s^+ ratio with multiplicity and prediction tension 26

Next step - jets (?)

- Λ/K_{S^0} ratio in jets does not show a maximum at intermediate p_T
- Non-zero v_2 of jet particles in both Pb–Pb and p–Pb collisions, amplitude differs from that of the inclusive particles

Outlook: ALICE run5 and beyond

Charmed particle RAA

- Suppression increases from peripheral to central collisions
- Similar suppression in the most central collisions between mid- and forward-rapidity
 - Charm quarks undergo strong energy loss in a wide rapidity range

Neson-to-meson ratios

- No significant p_T-dependence for charm
- Good agreement with models that use fragmentation fraction tuned on leptonic

Strange-to-non-strange meson

Strange-to-non-strange meson

- Fragmentation fraction ratios for charm and beauty mesons are well described by PYTHIA8 with fragmentation fraction tuned on e-e+
- No significant dependence on energy and collision systems

Ac/D0 ratio in pp and p-Pb

- Baryon-to-meson ratio enhancement is observed in p–Pb and pp collisions at high multiplicities in charm sector
 - Similar as that in strange sector

ALICE Phys. Rev. C104 (2021) 054905 ALICE Phys. Rev. Lett. 127 (2021) 202301

Λ_{c} +/D⁰ ratio in pp collisions

ALICE Phys. Rev. C107 (2023) 064901

- Λ_c/D^o ratios significantly higher than e^-e^+ , p_T dependence observed
- PYTHIA8 color-reconnection Allowing "junction" topologies in multiparton interactions, which enhance the charm baryon production

$\Sigma_c^{0,++}$ production in pp collisions

PYTHIA8 with CR-BLC overestimates the data

ALICE Phys. Rev. Lett. 128 (2022) 012001

• SHM+RQM, Catania, and QCM describe the $\Lambda_c^+(\leftarrow \Sigma_c^{0,+,++})/\Lambda_c^+$ ratio while

Strange charmed baryon in pp

higher-mass resonances are considered

Catania model closer to the measurement when decays from additional

Heavy flavours in p-Pb

Femtoscopy and polarization

