# Rendezvous with the QGP: Jet Observables

张本威 (Ben-Wei Zhang) 华中师范大学 Central China Normal University

原子核结构与相对论重离子碰撞前沿交叉研讨会 大连, 2023.8.1-5

# Outline

#### Introduction

- Full jet observables
- 1) splitting scales
- 2) dead-cone effect of jet quenching
- 3) transverse sphericity
- 4) jet broadening
- Summary

# The Little Bang



### Jet quenching

Parton energy has been proposed as an excellent probe of the hot/dense matter created at HIC.



# Jet quenching at RHIC and LHC





# **Fingerprints of jet quenching**



# **Full jets** $f^N(x,\mu_f)$ Jet $f^N(x,\mu_f)$ Jet $\frac{d\sigma^{\text{jet}}}{dE_T dy} = \frac{1}{2!} \int d\{E_T, y, \phi\}_2 \frac{d\sigma[2 \to 2]}{d\{E_T, y, \phi\}_2} S_2(\{E_T, y, \phi\}_2)$ $+\frac{1}{3!}\int d\{E_T, y, \phi\}_3 \frac{d\sigma[2 \to 3]}{d\{E_T, y, \phi\}_3} S_3(\{E_T, y, \phi\}_3)$

# Full jets



# What is a Full Jet?



 Jet is an approximate image of the parent parton. Jet is defined by a jet finding algorithm, which maps the momenta of the final state particles into the momenta of a certain number of jets:



### World inside a jet



# **Observables related to full jets**

inclusive jets; di-jets; gamma + jet; Z/W + jet; heavy flavor jets; jet shape; jet FF; angularity; splitting scale; groomed jets;

. . . . . .

sphericity; thrust; Jet broadening; Fox-Wolfram moment;

. . . . . .

jet yields

. . . . . .

jet substructure

**Inter-jet properties** 

# Jets in quark soup



#### **Reclustered large radius jets**





#### Reclustered LR jets in p+p





#### **Nuclear modifications**

#### Nuclear suppression of reclustered LR jets at R=1.0 is larger than that of inclusive jets with R=0.4.



#### **Energy loss fraction**



### **Energy loss of reclustered jets**



17

### Heavy flavor jets

#### Heavy quark energy loss

 Heavy quark energy loss will be suppressed due to deadlcone effect relative to light quark.





BWZ, E Wang, X N Wang, PRL (2004); NPA (2005)

Dokshitzer, Kharzeev, PLB (2001); Djordjevic, Gyulassy, PRC (2003)

#### Suppression of HF jets

 Heavy flavor jet should be less suppressed as compared to inclusive jets due to dead-cone effect.



#### Dead-cone effect in vacuum

 A direct observation of dead-cone effect in p+p is made with an iterative declustering techniques by ALICE.

$$dP_{HQ} \simeq \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{k_\perp^2 dk_\perp^2}{(k_\perp^2 + \omega^2 \theta_0^2)^2} = dP_0 \left(1 + \frac{\theta_0^2}{\theta^2}\right)^2$$



#### Dead-cone effect in vacuum

 A direct observation of dead-cone effect in p+p is made with an iterative declustering techniques by ALICE.



#### **Dead-cone effect in A+A**



#### Mean value of emission angle

| $E_{ m Radiator}$ | Inclusive jets                  |                             | $D^0$ jets                      |              |    |
|-------------------|---------------------------------|-----------------------------|---------------------------------|--------------|----|
|                   | $\langle 	heta  angle_{ m spl}$ | $\mathrm{N}_{\mathrm{spl}}$ | $\langle 	heta  angle_{ m spl}$ | $ m N_{spl}$ |    |
| $5-10~{ m GeV}$   | 0.227                           | 1.358                       | 0.277                           | 1.233        | pp |
|                   | 0.256                           | 1.405                       | 0.280                           | 1.280        | AA |
| $10-20 { m ~GeV}$ | 0.220                           | 1.810                       | 0.244                           | 1.510        | pp |
|                   | 0.254                           | 1.757                       | 0.263                           | 1.600        | AA |
| $20-35~{ m GeV}$  | 0.232                           | 2.040                       | 0.232                           | 1.822        | pp |
|                   | 0.249                           | 1.977                       | 0.251                           | 1.860        | AA |

W Dai, M Z Li, BWZ, E Wang, arXiv: 2205.14668

# Global geometries of Multi-jet events



Data recorded: Wed Nov 25 12:21:51 2015 CET Run/Event: 262548 / 14582169 Lumi section: 309





#### **Event shape: sphericity**



#### **Event shape: sphericity**

What do multiple jets look like in p+p and A+A?
What's the change of event shapes in A+A relative to that in p+p?



#### Sphericity in p+p



#### **Sphericity in Pb+Pb**



S Chen, W Dai, S Zhang, Q Zhang, BWZ, EPJC (2020)

#### Sphericity in n<sub>jet</sub>=2 events



# Sphericity in different n<sub>jet</sub> events



#### Jet number reduction in Pb+Pb



#### Sphericity in n<sub>jet</sub>>=3 events



#### **Event Shape: jet broadening**

Define an axis  $n_T$ 

$$\max_{\hat{n}} \frac{\sum_{i} |\vec{p}_{T,i} \cdot \hat{n}_{T}|}{\sum_{i} p_{T,i}}$$

• one can separate the region *C* into an upper (U) side  $C_U$  consisting of all jets in *C* with  $\vec{p}_T \cdot \hat{n}_T > 0$  and a lower (L) side  $C_L$  with  $\vec{p}_T \cdot \hat{n}_T < 0$ .

$$\eta_X \equiv \frac{\sum_{i \in \mathcal{C}_X} p_{T,i} \eta_i}{\sum_{i \in \mathcal{C}_X} p_{T,i}}, \quad \phi_X \equiv \frac{\sum_{i \in \mathcal{C}_X} p_{T,i} \phi_i}{\sum_{i \in \mathcal{C}_X} p_{T,i}}$$

#### We define jet broadening

$$B_X \equiv \frac{1}{2P_T} \sum_{i \in C_X} p_{T,i} \sqrt{(\eta_i - \eta_X)^2 + (\phi_i - \phi_X)^2}, \quad B_{tot} \equiv B_U + B_L$$

#### Jet broadening

 Jet broadening characterizes the weighted broadening of the jets relative to the center of the outgoing energy flow, the distribution of energy flow of multi-jets in the final-state.



J Kang, L Wang, W Dai, S Wang, BWZ, arXiv: 2304.04649

#### Jet broadening in p+p



### Jet broadening in Pb+Pb



J Kang, L Wang, W Dai, S Wang, BWZ, arXiv: 2304.04649

### Jet number reduction due to Eloss

|                     | рр                 | PbPb               |
|---------------------|--------------------|--------------------|
| $N_{\rm jet}=3$     | 76.98±0.30%        | 81.17±0.39%        |
| $N_{\rm jet} = 4$   | $18.59 \pm 0.13\%$ | $15.53 \pm 0.25\%$ |
| $N_{\rm jet} \ge 5$ | $4.43{\pm}0.05\%$  | 3.30±0.05%         |



### **Multi-jet events Classifications**

| Matched G                                                           | Condition                                                                                                       | Category     |       |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------|-------|
| Quenched                                                            | UnQuenched                                                                                                      | Category     |       |
|                                                                     | $p_T^{\min jet} > 30 \text{ GeV}$<br>$110 < p_{T,1} < 170 \text{ GeV}$<br>$N_{jet} \ge 3$<br>(same as Quenched) | Survival     | ~ 58% |
| $1\overline{10} < p_{T,1} < 170 \text{ GeV}$ $N_{\text{jet}} \ge 3$ | $p_T^{\min  { m jet}} > 30  { m GeV} \ p_{T,1} > 170  { m GeV} \ N_{ m jet} \geqslant 3$                        | Falldown     | ~ 27% |
| -                                                                   | Other contribution                                                                                              | Restructured | ~ 15% |
| Iet broadening                                                      | g, 110 $< p_{\mathrm{T,1}} < 170~\mathrm{Ge}$                                                                   | eV           |       |
| g 0.7 E → PbPb                                                      | P Restructured<br>Survival<br>Falldown                                                                          |              |       |

# Recap

- The Splitting scale of Reclustered large radius jet in Pb+Pb is calculated, which is in good agreement with experiment data.
- The possibility of observing dead-cone effect of jet quenching is explored.
- Event shape observables with jet quenching in Pb+Pb are investigated: sphericity and jet broadening. Jet number reduction effect VS medium-induced gluon radiation

Backup

# Linear Boltzmann Transport Model

#### • Elastic scattering:

$$p_{1} \cdot \partial f_{1}(p_{1}) = -\int dp_{2}dp_{3}dp_{4}(f_{1}f_{2} - f_{3}f_{4})|M_{12\to34}|^{2}$$

$$\times (2\pi)^{4}\delta^{4}(P_{1} + P_{2} - P_{3} - P_{4})$$

$$dp_{i} \equiv \frac{d^{3}p_{i}}{2E_{i}(2\pi)^{3}}, |M_{12\to34}|^{2} = Cg^{2}(s^{2} + u^{2})/(t + \mu^{2})^{2}$$

$$f_{i} = 1/(e_{i}^{p.u/T} \pm 1)(i = 2, 4), f_{i} = (2\pi)^{3}\delta^{3}(\vec{p} - \vec{p}_{i})\delta^{3}(\vec{x} - \vec{x}_{i})(i = 1, 3)$$

X N Wang, Y Zhu, PRL(2013); He, Luo, Wang, Zhu, PRC (2015)

• Inelastic scattering by the higher twist approach:

$$\frac{dN_g}{dxdk_{\perp}^2dt} = \frac{2\alpha_s P(x)\hat{q}}{\pi k_{\perp}^4} Sin^2 \left(\frac{t-t_i}{2\tau_f}\right) \left(\frac{k_{\perp}^2}{k_{\perp}^2+x^2M^2}\right)^4$$

Guo, X N Wang, PRL(2002); BWZ, X Wang, NPA(2003);

BWZ, E Wang, X N Wang, PRL (2004); Majumder, PRD(2012)

### **Improved Langevin equations**

SHELL: Simulating Heavy quark Energy Loss by Langevin equations

$$\vec{x}(t + \Delta t) = \vec{x}(t) + \frac{\vec{p}(t)}{E} \Delta t$$

$$\vec{p}(t + \Delta t) = \vec{p}(t) - \Gamma(p)\vec{p}\Delta t + \vec{\xi}(t)\Delta t - \vec{p}_g$$
G.D. Moore et al.,  
PRC71(2005)064904;  
S. Cao G.Y. Qin and S.A. Bass,  
PRC88 (2013) 044907

Diffusion coefficient  $\kappa$  and drag coefficient  $\Gamma$  are correlated by

$$\kappa = 2\Gamma ET = \frac{2T^2}{D_s}$$

Higher-Twist approach:

$$\frac{dE}{dL} = -\frac{\alpha_s C_s \mu_D^2}{2} ln \frac{\sqrt{ET}}{\mu_D}$$

Phys.Rev.Lett. 85 (2000) 3591-3594; Phys.Rev.Lett. 93 (2004)072301; Phys.Rev. D85 (2012) 014023

$$\frac{dN}{dxdk_{\perp}^2 dt} = \frac{2\alpha_s C_s P(x)\hat{q}}{\pi k_{\perp}^4} \sin^2(\frac{t-t_i}{2\tau_f}) (\frac{k_{\perp}^2}{k_{\perp}^2 + x^2 m^2})^4$$

## **Dead-cone effect in A+A**



$$egin{aligned} & kt \ algorithm \ & d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) rac{\Delta y^2 + \Delta \phi^2}{R^2} & d_{iB} = p_{ti}^{2p} \ & R_{ij} = \sqrt{(y_i - y_j)^2 + (\phi_i - \phi_j)^2} & p = 1 \end{aligned}$$

- Compute  $d_{ij}$  and  $d_{iB}$  for all particles in the final state, and find the minimum value.
- If the minimum is a  $d_{iB}$ , declare particle *i* a jet, remove it from the list, and go back to step one.
- If the minimum is a  $d_{ij}$ , combine particles *i* and *j*, and go back to step one.
- Iterate until all particles have been declared jets.

# anti-kt and C/A algorithms

$$d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \frac{\Delta y^2 + \Delta \phi^2}{R^2} \qquad d_{iB} = p_{ti}^{2p}$$

The Cambridge/Aachen algorithm:

$$p = 0$$

#### The anti-kt algorithm:







# Mean value of emission angle

| $E_{ m Radiator}$   | Inclusive jets                   | $D^0$ jets                       |                        |
|---------------------|----------------------------------|----------------------------------|------------------------|
| L'Radiator          | $\langle 	heta  angle_{ m jets}$ | $\langle 	heta  angle_{ m jets}$ |                        |
| $5-10~{ m GeV}$     | 0.31                             | 0.34                             | pp                     |
|                     | 0.36                             | 0.36                             | AA                     |
| $10-20~{ m GeV}$    | 0.40                             | 0.37                             | pp                     |
|                     | 0.45                             | 0.42                             | AA                     |
| $20 - 35 {\rm GeV}$ | 0.47                             | 0.42                             | $\mathbf{p}\mathbf{p}$ |
|                     | 0.49                             | 0.47                             | AA                     |

W Dai, M Z Li, BWZ, E Wang, arXiv: 2205.14668

## **Energy correlation**



S Chen, W Dai, S Zhang, Q Zhang, BWZ, EPJC (2020)