

Fast simulation of the 4th detector at CEPC with Delphes

Xu Gao, Gang Li, Siman Liu , Youhui Yun, Linghui Wu

JiLin University

Outline

- Introduction
- Implementation and validations of CEPC new detector
 - Tracker
 - Particle identification(PID)
 - Calorimeter
- Summary

The Delphes

- Delphes is a modular framework that simulates the response of a multipurpose detector
- Includes:
 - charged particle propagation in B field
 - Full Covariance
 - EM/Had calorimeters
 - particle-flow
 - •
- Provides:
 - tracks, photons, neutral hadrons
 - Lepton/photon isolation
 - Jets(eekt), missing energy

Fast simulation of the 4th detector at CEPC

- Delphes can provide a way for physics studies at a fast speed but it is unsatisfactory in simulation of CEPC detector
- In order to physics with new CEPC detector more work
 - Implement the detector with a tcl card
 - Provide a dedicated PID module
 - Provide more flexibility between lepton/photon isolation and jet cluster

The detector layout

- VTX(Vertex Detector):
 - Six high spatial resolution pixel detector.
 - Accurate measurement of charged particle track parameters
- Drift Chamber:
 - A cylinder with an inner diameter of 0.6 m and an outer diameter of 1.8 m.
 - Determine the momentum of charged particle
- Silicon Tracker:
 - Consist of SIT(Silicon Inner Tracker), FTD(Forward Tracking Detector), SET(Silicon External Tracker), ETD(Endcap Tracking Detector).

R(m)

Provide high precision information of collision points on the trajectory.

- Calorimeter
- Superconducting magnets
- Muon Detector

Inner diameter from 0.8m to 0.6m

Tracker performance

PID

- **PID** to identify *e*, *μ*, *π*, *K*, *p*, according to the different mass among different particles
- Hadron PID : identify π , K, p in Drift Chamber
- Electromagnetic PID : identify e, μ using Energy Calorimeter and Muon Detector

• Pion and kaon identification is always the hardest, because the mass of proton is much greater than pion's and kaon's.

Hadron PID

- Calculate the probabilities of particles by assuming their masses
 - *π*, *K*, *p* ···

• The most likely assumption is taken

The calculation of the probability

Define chi-square:

 $(\chi^i)^2 = (\chi_1^i)^2 + (\chi_2^i)$ (It follows a Chi-square distribution of 2 degrees of freedom)

Compare the probabilities **The most likely assumption is taken**

K/pi Separation Power(dN/dx)

Consider effect of cluster counting efficiency as a function of dN/dx in xy plane

 $\varepsilon_{counting} = \frac{dN/dx_{meas}}{dN/dx_{real}}$

Cluster counting efficiency curve is tested with 2% noise

Ideal vs consider cluster counting efficiency

Only considering π and K later 11

PID efficiency only using dN/dx and tof respectively

$\frac{n_{sel}}{n_{tot}^{K}}$

- ϵ^{K} is Kaon PID efficiency
- n_{sel}^{K} is number that K is identified as K $(Prob^k > Prob^{\pi})$
- n_{tot}^{K} is number of K

dominant in the low momentum range

kaon PID efficiency ($|\cos\theta| < 0.854$)

dominant in the high momentum range

PID efficiency

Combine dN/dx and tof

When $|\cos\theta| < 0.90$, The PID performance is better

As momentum increases, efficiency decreases quickly

Calorimeter Resolution

Set the resolution formula as a function of energy:

$$\frac{\sigma_E}{E} = \frac{a}{\sqrt{E}} \oplus \frac{c}{E} \oplus b$$

- a , stochastic term:Fluctuations in the number of signal generating processes
- c, noise term:Noise in readout electronics, 'pile-up' due to other particles from other collision events
- b , constant term:Imperfections in calorimeter construction,Nonuniform detector response,etc.

Ignoring the noise term,

- for ECAL, set $a_E = 0.03$, $b_E = 0.01$
- for HCAL:set $a_H = 0.4, b_H = 0.02$ consider $H \rightarrow \gamma \gamma$, $H \rightarrow gg \rightarrow 2$ jets, draw the invariant mass spectrum

Gamma and jet

Н→үү

Mean = 124.99 ± 0.002 GeV, Resolution = 0.96 ± 0.01 GeV

Mean = 125.82 ± 0.013 GeV, Resolution = 4.78 ± 0.013 GeV

Summary

- Simulation of CEPC the 4th detector with Delphes is ready to use
 - The detector layout is implemented and validated
 - PID : probabilities of different hypotheses of tracks provided for analyzers
 - Guarantee there is no overlap between lepton/photon isolation and jet clustering with eekt
- Still many works need to do
 - More validation
 - updates according to detector optimization.
 - More realistic simulation of dN/dx and cluster counting efficiency curve will be improved
 - ...
- Welcome to use and feedback!

Thanks!

Backup

Tracker layout

Detector	Layer	Radius(mm)	Halfz(m)	Material budget[x/X0]
VXD(1	16	0.2	0.0015
	2	18	0.2	0.0015
	3	38	0.2	0.0015
	4	40	0.2	0.0015
	5	58	0.2	0.0015
	6	60	0.2	0.0015
Shell	1	65	0.2	0.0015
SIT	1	120	0.241	0.0065
	2	270	0.455	0.0065
	3	420	0.721	0.0065
	4	570	0.988	0.0065
Inner wall	1	600	2.98	0.00104
DC	80	600-1800	2.98	0.002
Outer wall	1	1800	2.98	0.01346
SET	1	1815	2.98	0.0065

Tracker layout

Detector	Rin(mm)	Rout(mm)	Z(m)	Material budget[x/X0]
DSK1A	29.5	120	0.241	0.0065
DSK1B	29.5	120	-0.241	0.0065
DSK2A	30.5	270	0.455	0.0065
DSK2B	30.5	270	-0.455	0.0065
DSK3A	32.5	420	0.721	0.0065
DSK3B	32.5	420	-0.721	0.0065
DSK4A	34	570	0.988	0.0065
DSK4B	34	570	-0.988	0.0065
ETD1	600	1822	3.0	0.0065
ETD2	600	1822	-3.0	0.0065

The calculation of χ

• dN/dx
$$x_1^i = \frac{(dN/dx)_{meas} - (dN/dx)_{exp}^i}{(\sigma)_{dN/dx}^i}$$

• dN/dx and $(\sigma)_{dN/dx}$ are functions of $\beta\gamma$
• $dN/dx_{exp} = f(\beta\gamma) * \varepsilon_{counting}$ (f is the theoretical function that only depends on $\beta\gamma$)
• $(\sigma)_{dN/dx} = \varepsilon_{counting} * \sqrt{f(\beta\gamma)}$
• In the formula:
• $(dN/dx)_{exp}$ and $(\sigma)_{dN/dx}$ are calculated with $\beta\gamma$'s for 5 particle hypotheses
• $(dN/dx)_{meas}$ follows a Poisson distribution with mean and sigma calculated with the truth $\beta\gamma$
• TOF $x_2^i = \frac{(tof)_{meas} - (tof)_{exp}^i}{(\sigma)_{tof}^i}$
• $(tof)_{exp} = \frac{L}{v} = \frac{L}{\beta c}$ $\beta = \frac{p}{\sqrt{p^2 + (m^i)^2}}$
• $(tof)_{meas}$: follows a Gaussian distribution with mean = $(tof)_{exp}$ and $(\sigma)_{tof}$
• $(\sigma)_{tof} = 30ps$