

MACE Experiment in China

Jian Tang (Sun Yat-sen University, China)

Collaborators: SYSU—Yu Chen, Han Shen, Zhen-Cheng Huang, Yu Xu Shi-Han Zhao, Ming-Chen Sun, Tao Yu, Yun-Song Ning, Yi-Xing Zhou, Ai-Yu Bai, IHEP—Jing-Yu Tang, Ye Yuan, Hai-Bo Li, Yao Zhang, Guang Zhao, Han Miao, Yu Bao Osaka University—Chen Wu

Motivation

Simulation and Optimization

- >Muonium Production
- >Conceptual design of detector
- Preliminary simulation results
- •Summary

Frontiers in Particle Physics

- High Energy Frontier
- High Intensity Frontier
- Cosmic Frontier

Searching for BSM:

- The origin of neutrino masses?
- Charged lepton flavor violation (cLFV)?
- The mystery of the matterantimatter asymmetry?
- Dark matter?

2022/10/12

The Intensity Frontier

- Neutrino Experiments:
 T2K, NOvA, T2HK, DUNE...
 JUNO...
- Search for cLFV:
 - ≻ Mu2e
 - > COMET
 - ≻ MEG
 - ≻ Mu3e
- $\mu^+ \rightarrow e^+ e^- e^+$

 $\mu^- + \text{Al} \rightarrow e^- + \text{Al}$

 $\mu^+ \rightarrow e^+ \gamma$

- Precision measurements with muons:
 - Muon lifetime measurments: MuLan and FAST (PSI).
 - Singlet muon capture on proton: MuCap.
 - ➢ Muon capture on the deuteron: MuSun.
 - Michel parameters of muon decay: TWIST (TRIUMF).
 - Muon magnetic momentum: E821, Fermilab g-2, J-PARC g-2.
 - Muonium hyper-fine structure: MeuSEUM (J-PARC).

Snowmass2021 - Letter of Interest

RF5-RF0-126

Search for Muonium to Antimuonium Conversion

RF Topical Groups: (check all that apply \Box / \blacksquare)

□ (RF1) Weak decays of b and c quarks
 □ (RF2) Weak decays of strange and light quarks
 □ (RF3) Fundamental Physics in Small Experiments
 □ (RF4) Baryon and Lepton Number Violating Processes
 ■ (RF5) Charged Lepton Flavor Violation (electrons, muons and taus)
 □ (RF6) Dark Sector Studies at High Intensities
 □ (RF7) Hadron Spectroscopy
 □ (Other) [Please specify frontier/topical group(s)]

Contact Information: (authors listed after the text) Name and Institution: Jian Tang/Sun Yat-sen University Collaboration: MACE working group Contact Email: tangjian5@mail.sysu.edu.cn

Abstract: It is puzzling whether there is any charged lepton flavor violation phenomenon beyond standard model. The upcoming Muonium (bound state of μ^+e^-) to Antimuonium (μ^-e^+) Conversion Experiment (MACE) will serve as a complementary experiment to search for charged lepton flavor violation processes, compared with other on-going experiments like Mu3e ($\mu^+ \rightarrow e^+e^-e^-$), MEG-II ($\mu^+ \rightarrow e^+\gamma$) and Mu2e/COMET ($\mu^-N \rightarrow e^-N$). MACE aims at a sensitivity of P($\mu^+e^- \rightarrow \mu^-e^+$) ~ $\mathcal{O}(10^{-13})$, about three orders of magnitude better than the best limit published two decades ago. It is desirable to optimize the slow and ultra-pure μ^+ beam, select high-efficiency muonium formation materials, develop Monte-Carlo simulation tools and design a new magnetic spectrometer to increase S/B.

Yu Chen, Yu-Zhe Mao, Jian Tang, School of Physics, Sun Yat-sen University, China. Yu Bao, Yu-Kai Chen, Rui-Rui Fan, Zhi-Long Hou, Han-Tao Jing, Hai-Bo Li, Yang Li, Han Miao, Ying-Peng Song, Jing-Yu Tang, Nikolaos Vassilopoulos, Tian-Yu Xing, Ye Yuan, Yao Zhang, Guang Zhao, Luping Zhou, Institute of High-Energy Physics, Beijing, China. Chen Wu, Research Center of Nuclear Physics (RCNP), Osaka University, Japan.

Probing the doubly charged Higgs boson with a muonium to antimuonium conversion experiment

Chengcheng Han,¹ Da Huang[•],^{2,3,4,*} Jian Tang[•],^{1,†} and Yu Zhang[•],^{5,6} ¹School of Physics, Sun Yat-Sen University, Guangzhou 510275, China ²National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China ³School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou J10024, China ⁴International Center for Theoretical Physics Asia-Pacific, Beijing/Hangzhou 10010, China ⁵Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China ⁶School of Physics and Materials Science, Anhui University, Hefei 230601, China

PHYSICAL REVIEW D 103, 055023 (2021)

Searching for cLFV: Experimental Efforts

EXPERIMENT	FACILITY	PROCESS	STATUS
MEGII	PSI (Switzerland)	$\mu^+ ightarrow e^+ \gamma$	Running
Mu2e	Fermilab (US)	$\mu^- N \rightarrow e^- N$	Installing, about to run
COMET	J-PARC (Japan)	μ^{-} Al $\rightarrow e^{-}$ Al	Installing, about to run
Mu3e	PSI (Switzerland)	$\mu^+ ightarrow e^+ e^- e^+$	Installing, about to run

- Muonium-antimuonium transition: as an important cLFV process, no more experiments were proposed since 1999;
- With the improvement of beam and the progress of detector technology, it is expected to make a breakthrough.

EXPERIMENT	FACILITY	STATUS
MACS (1999)	PSI (Switzerland)	Completed
MACE	Muon beamline (China)	R&D
Muonium conversion experiment	J-PARC (Japan)	R&D

Mu2e

COMET

2022/10/12

Snowmass whitepaper

March 23, 2022

arXiv: 2203.11406

Muonium to antimuonium conversion: Contributed paper for Snowmass 21

Ai-Yu Bai,¹ Yu Chen,¹ Yukai Chen,² Rui-Rui Fan,² Zhilong Hou,² Han-Tao Jing,² Hai-Bo Li,² Yang Li,² Han Miao,^{2,3} Huaxing Peng,^{2,3} Alexey A. Petrov (Coordindator),⁴ Ying-Peng Song,² Jian Tang (Coordinator),¹ Jing-Yu Tang,² Nikolaos Vassilopoulos,² Sampsa Vihonen,¹ Chen Wu,⁵ Tian-Yu Xing,² Yu Xu,¹ Ye Yuan,² Yao Zhang,² Guang Zhao,² Shi-Han Zhao,¹ and Luping Zhou²

¹School of Physics, Sun Yat-sen University, Guangzhou 510275, China
 ²Institute of High Energy Physics, Beijing 100049, China
 ³University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

⁴Department of Physics and Astronomy Wayne State University, Detroit, Michigan 48201, USA ⁵Research Center of Nuclear Physics (RCNP), Osaka University, Japan

The spontaneous muonium to antimuonium conversion is one of the interesting charged lepton flavor violation processes. It serves as a clear indication of new physics and plays an important role in constraining the parameter space beyond Standard Model. MACE is a proposed experiment to probe such a phenomenon and expected to enhance the sensitivity to the conversion probability by more than two orders of magnitude from the current best upper constraint obtained by the PSI experiment two decades ago. Recent developments in the theoretical and experimental aspects to search for such a rare process are summarized.

Accelerator centers in the YGA Bay area

CSNS 1.6 GeV 25 Hz 100 kW proton driver → 500 kW upgrade on the way Heavy Ion Accelerator Facility (HIAF) & China initiative Accelerator Driven Sub-critical system (CiADS): 500MeV 5mA CW proton beam

Ref: Sheng Wang from IHEP

Ref: Wen-Long Zhan from IMP

Three accelerator facilities in this bay area: CSNS v.s CiADS&HIAF

- Which one will build the first accelerator muon source in China within next 5 years?
- Time to propose something on fundamental physics with accelerator muons.

Accelerator centers in the YGA Bay area

CSNS 1.6 GeV 25 Hz 100 kW proton driver → 500 kW upgrade on the way Heavy Ion Accelerator Facility (HIAF) & China initiative Accelerator Driven Sub-critical system (CiADS)

Ref: Sheng Wa

Three accelerator faci

- Which one will bui
- Time to propose s

I-Long Zhan from IMP

IAF

nina within next 5 years?

ccelerator muons.

2022/10/12

- Latest result of muonium-antimuonium conversion (MACS, PSI, 1999): $P_{M\overline{M}} < 8.3 \times 10^{-11} (90\% \text{ C.L.}).$
- MACE: the first proposed muoniumantimuonium conversion experiment since 1999, aim at physics sensitivity by more than two orders of magnitude.
- Together with other flavor and collider searches, MACE will also shed light on the mystery of the neutrino masses.

MACE: Muonium to Antimuonium Conversion Experiment.

Content

•Motivation

Simulation and Optimization

>Muonium Production

>Conceptual design of detector

Preliminary MC Results

•Offline Software development

•Summary

Muon and muonium production

relative μ^+ yield $\propto \pi^+$ stop density $\cdot \mu^+$ Range \cdot length $\propto n \cdot \sigma_{\pi^+} \cdot SP_{\pi^+} \cdot \frac{1}{SP_{\mu^+}} \cdot \frac{\rho_c (6/12)_c}{\rho_x (Z/A)_x}$ $\propto Z^{1/3} \cdot Z \cdot \frac{1}{Z} \cdot \frac{1}{Z}$ $\propto \frac{1}{Z^{2/3}}$

Previous experience

- Hot tungsten in 1986: 4% from 4 MeV μ⁺
- SiO₂ powder in 1990: 1%-2% from 4 MeV μ⁺
- SiO₂ film(cold) in 2012: 40% from 5 keV μ⁺

Proposed target: aerogel, super fluid helium...

Super Fluid Helium

 μ^+

2022/10/12

Silica powder

Jian Tang(tangjian5@mail.sysu.edu.cn)

11

Muonium production and transportation

Μ

Silica aerogel target sample:

Simulated events of muonium production and emission:

2022/10/12

Content

EM Calorimeter

•Motivation

Simulation and Optimization

• How to detect the muonium-antimuonium conversion?

$$\mu^+e^- \rightarrow \mu^-e^+$$

• We can do this by identifying the final states:

Conceptual design

(7)

8

- Spectrometer: identifies Michel e⁻.
- Vertex coincidence: Michel e⁻ track and e⁺ transverse position projection.
- Calorimeter: identifies atomic e⁺.
- (6)Transport atomic e⁺ to MCP MCP measure the transverse position Calorimeter detect the e⁺ annihilation

Conceptual design

2022/10/12

MCP response

- A general MCP simulation tool has been developed based on Geant4 -
- Implement Furman model to simulate the production process of secondary electron
- Simulation results are consistent with Furman model

Credit: Han Miao.

SEY of true secondary electron

17

Monte Carlo: Fast Simulation

SUN UNITY

(a

(b)

- Backgrounds:
 - μ⁺ decays to e⁺, Bhabha scattering to generate high-energy e⁻ in coincident with low-energy e⁺

$$\blacktriangleright \mu^+ \text{ decays:} \quad \mu^+ \to e^+ \nu_e \overline{\nu_\mu} e^+ e^-$$

• Anti-muonium decay signals by position-time coincidence

Monte Carlo: Fast Simulation

2022/10/12

Status of simulation software

- MACE offline software: designed for R&D, simulation & physics study.
- Designed and programmed with C++ best practice and pattern.

A W T ST

•Motivation

Simulation and Optimization

- >Muonium Production
- >Conceptual design of detector
- •Preliminary simulation results

Summary

- Low energy muon beam serves as a probe of physics beyond SM and precision measurement of QED.
- In YGA bay area, it is time to build the first accelerator muon beamline in China and start related physics study.
- MACE is one of the recently proposed cLFV experiments with a muon source.
- R&D of the muon beamline, muonium production and transportation, design of vertex & timing coincident identification of signals by magnetic spectrometer and MCP.
- Aim at more than two orders of magnitude improvement compared to the latest result in PSI done two decades ago. The proposal is still at the preliminary stage → there is a long way to go!
- Welcome to joining the R&D efforts or offering precious suggestions/comments.

Acknowledgement:

- Innovation Training Program for bachelor students at School of Physics in SYSU.
- Silica aerogel sample offered by Prof. Jian Zhou, School of Materials in SYSU.
- Financial support from NSFC grant no. 12075326.

2022/10/12

THANK YOU