

R&D and Verification of Key Technologies for a High Energy **Circular Electron-Positron Collider**

Zhijun Liang for CEPC MOST2 vertex detector team

Institute of High Energy Physics Chinese Academy of Sciences

News about Taichupix3 production

- 6 Taichu3 wafers are ready.
 - Wafer arrival at IHEP in 5th July 2022
 - 3 wafers (standard process) + 3 wafers (modified process)
- Send 4 wafers to NCAP for wafer testing , thinning and dicing
- Send 1 wafers for thinning (150um) and dicing
 - 1st round: Send 5 chips for wired bonding, 2 boards working
 - 2nd round Send 5 more chip, ? working
 - 3 chips with normal dicing (top and bottom pads available)
 - 2 chips dicing without top pads
 - \rightarrow IR drop is not a problem ?
 - Low resistance \rightarrow after power on, resistance become normal ?

After wire-	bonding, a	round half of chips	have low resistance	e (<
Chip num.		After gluing (ohm)	After bonding (ohm)	Af
#8	AVDD		15k	4.4
	DVDD	5	3	3.3

ified process) hinning and dicing cinσ

Taichupix3 wafer-level testing

- Single chip test board testing on-going
- Wafer level testing in NCAP (on-going)
 - Reasonable yield in standard process (wafer 1,2,3)
 - Still need to check modified process (wafer 7,8,9)
 - May need to bias the sensor, not possible to bias it on the flex
 - Thinning

T212	2141	L-	0	2	E	3				-	T	21	.2	1	4	1.	-()2	2E	32	2			Т	21	.2	214	41	-	08	8/	٩5	5		
													-																						
			2	:	1 :	1												2	1	2										2	2	2			
		8	2		<mark>6</mark> :	1	2	1									1	1	6	1	1	1							1	2	1	1	1	1	
	1	1	. 1		1 :	1	1	1	1							1	1	2	1	1	1	1	2					6	1	1	1	1	1	1	2
	1	1	. 1		2 :	1	1	1	2							1	1	1	1	2	1	1	5					1	1	1	1	1	1	1	2
	2	1	. 6		1 :	1	1_	1	1							1	1	1	1	1	1	1	2					2	2	1	1	2	1	1	1
		1	. 6		1 (6	1	6									2	1	1	6	1	1							2	1	1	1	2	1	
			2		1 :	1												2	1	1										2	1	1			

#2

#7\?

1,2,3) (,8,9) it on the flex

#1

#9

TaichuPix3 tests

- Functionality of the full signal chain proved with laser tests
- Threshold scan in Beta source tests
- Irradiation tests
- Irradiation and Tests in BSRF
- X ray machine is ready now ?

BSRF (new!)

Apluse maps

Laser test with Taichupix2

• Reach 4.4um resolution using back-side infra-red laser injection.

TID radiation test in BEPC BSRF in middle of Oct

- The current version of single chip board can be used ?
- Or shall we switch to 2nd version single-chip board •
 - **Components are further away from TaichuPix chip** •
 - X ray can have larger distance to FPGA (safer ?)
- Shall we try to overlay two single-chip boards
 - To catch some electrons events ?

2nd version of single chip board

- current version of single chip board

Flex and interface board

- Interface board was planned to have soft+hard PCB design
 - Interface board is to connected the flex and FPGA board
- Due to low yield, switched to hard PCB design, no flexible components
- Expect no much impact to support structure
- Time scale for 2nd version of interface board , ready
 - Connector position in 2nd version (better to be in the middle)
- Board for Clock and synchronization ~available, to be tested

Interface board

Interface board+FPGA +flex

Flex and interface board

- 2nd version of the flex submitted. Still not produced yet, expect this week
 - Submitted date (September 18th) or two-layer design, Sep 26^t for 4th layer
 - Enlarge opening of the pad on flex (100um * 400um)
 - Add bus for ground for wire bonding
 - Modified the position of the hole
 - Change the position of the connector (on the other side of the sensor)
- Testing with single chip 1st version flex with wire bonding
 - Large leakage current ? Resistance increased after powering on ?

produced yet , expect this week er design, Sep 26^t for 4th layer Dum)

other side of the sensor) h wire bonding after powering on ?

Support structure of the ladder Ladder support production Production of ladder support with carbon fiber is in good progress • Half of the ladder support has been produced. (IHEP designed) • The yield of first batch of production is a bit low ($\sim 30\%$)

- New batch of production has higher yield •
- Expected 120 good ladder support in this production •

New batch ladder support

Detector module(ladder) assembly

- Progress in assembly in ladder
- Dummy
 - 2 flex with 10 glass dummy ASIC assembly
 - Automatic glue dispensing using gantry •
- Real chip

Wire bonded one Taichu3 on flexible PCB Jun and Ziyue are testing it with interface board

New pickup tools

Setting up wire bonding station For full-size detector module(ladder)

Ladder assembly

- Ladder (double side) = 20 ASIC chips + two flexible PCB + carbon fiber support
- Ladder assembly procedure verified with dummy ASIC (glass)

flexible PCB + carbon fiber support lummy ASIC (glass)

Vertex detector prototype assembly procedure

- Ladder installation procedure designed •
- Mockup with 3D printing production done
- Assembly with 3D mockup model
- Production with aluminum machining done
 - Will be at IHEP early Oct

Prototype support with aluminum machining

DAQ Architecture development

- Try to config single chip test board and data handling with DAQ software (done)
- Purchase DAQ PC for data taking (done)
- Parallel processing multi-chip (next step) •
- Hit maps on-line monitoring \bullet

data structure

Package Header (0xaa)	רן
Package Header (0xbb)	
Hit Num per package (0x10 or 0x40)	≻
Header id (8 or 16 bits)	
Trigger num (8 bits)	
Chip Timestamp (8 bits)	
FPGA Timestamp (Low 8 bits)	
FPGA Timestamp (Middle 8 bits)	L
FPGA Timestamp (High 8 bits)	
Addr Dcol + Addr row + Chip id + Valid flag (9 bits + 10 bits + 4 bits + 1 bit = 24 bits)	
Package Trailer (0xcc)	Ē
Package Trailer (0xdd)	
Byte count	│
Error coding	

offline reconstruction

- Dedicated discussion with Linhui Wu, Gang Li, Shuqi, Hao Zeng \bullet
- Alignment strategy will be presented today

track alignment

distance of hit with intersection point of track in a module. **Residual:**

Residuals follow a gaussian

Residual is shifted because hit position is shifted.

Plan for test beam

- Expect to perform beam test in DESY(3 7GeV electron beams)
 - IHEP test beam facility as backup plan (1-2 GeV electrons)
- Enclosure for detector with air cooling is developed for beam test
 - Beam is shooting at one sectors of vertex detectors
- List of people
 - Request for Invitation letter
- List of equipment

GeV electron beams) eV electrons) eveloped for beam test ectors

DESY test beam

Plan for test beam

- Person power, expertise
 - Ming Qi (NJU, overall)
 - Joao (IHEP, overall)
 - Zhijun Liang (IHEP, overall)
 - Tianya Wu(IHEP, ASIC)
 - Xiaomin Wei(NWPU, ASIC)
 - Jia Zhou (IHEP ,DAQ)
 - Ziyue Yan (IHEP ,firmware)
 - Xinhui Huang (IHEP, mechanism)
 - Shuqi Li (IHEP, offline)
 - Requesting Invitation letters (almost ready)
 - Application Passports

Plan for test beam

Equipment for Test beam

- Instrumentations
 - 1. vertex detector prototype
 - 2. FPGA boards (15 boards including JTAG adapter)
 - 3. Test PC (2 personal computers. one for test one for backup)
 - 3 PC for DAQ, electronics , offline ?
 - 2T harddisk, 交换机switcher (24 channels, 8 channels ...),
 - temp monitoring slow control (PC needed)
 - Power adaptors ..., 4-5 DC power supply ?
 - 4. Several DC power supply (borrow it from DESY?)
 - 5. Several network cables and other cables.
 - 6. Borrow one oscilloscope for debug •

Timeline

ASIC •

- ASICs arrive to IHEP (June)
- Dicing and Thinning (one wafer dicing before wafer-level tests) (June)
- Single ASIC testing
 - PCB under production (Done)
 - Wire-bonding on test PCB ... (Done)
 - Laser tests, Functional Tests ... (on-going)
 - Beta source test (on-going) •
 - Irradiation test (Oct, two days)
- Wafer level testing •
 - Wafer level test of ASICs (on-going)
 - Dicing , (thinning ?)

Timeline

- Ladders Mechanics:
 - Now: Carbon support samples available
 - Pre-production carbon support ladders available •
 - September: Production of final carbon support ladders (if needed) ullet
- Ladders Assembly: •
 - May: Flex cable available
 - May: Test of wire bonding and gluing on carbon support
 - Tooling design and production (June)
 - Dummy sensor (Glass) assembly on flex (JUNE) ullet
 - Jig tool, Wire bonding tests on flex (done)
 - Assembly of ladders with chips (Sep) ullet

Time line

- **Barrel Prototype:**
 - June: Installation mock-up (3D printed)
 - Received large part of 3D models from Jinyu today, printing now
 - July: Barrel support parts fabricated
 - August: Assembly first Barrel with ladder support only ullet
 - September: mounting readout ladders •
 - October: finished mounting the ladders, and readout tests ullet
 - Earlier November: Finish assembly of prototype ullet
 - November: Cosmic ray testing or BEPC beam test ullet
- December: DESY test beam

Global Schedule

- August: Assembly first Barrel with ladder support only ullet
- September: mounting readout ladders
- October: finished mounting the ladders, and readout tests ullet
- Earlier November: Finish assembly of prototype •
- November: Cosmic ray testing or BEPC beam test ullet
- December 12-22: DESY test beam (test beam time slot reserved for two weeks) \bullet

5-Dec-22	49		CMS-InnerTracker	X			
12-Dec-22	50		CEPC Vertex	x	HVMAPS	х	
19-Dec-22	51	Beam till 22/12 0800	CEPC Vertex	х	HVMAPS	х	
26-Dec-22	52					Shute	dowr

Pixel Analog design

- **CEPC time stamping precision requirement:**
- 25-100ns, better to time stamping each collision at Z pole
- **Taichu-1 pixel analog design:**
- 50ns~150ns (based one standard CMOS MAPS tech.)
- **Consider to use depleted CMOS MAPS** \bullet

Standard : no full depletion

Modified : full depletion, faster charge collection

News about Taichupix3 testing

- Single chip test news \bullet
 - Charge injection done
 - S curve scan in next step •
 - Need to mask off noise pixel
 - Laser tests •
 - Source tests (next step)
 - Threshold tuning
 - IR drop tests? (next step)
 - Top pad need ? \rightarrow dicing
 - Irradiation tests
 - BSRF beam time in Oct 2022
 - X ray machine ?

Preliminary TaichuPix-3 test

- Single chip test system built
- Taichipix3 can reach ~100 e- lower threshold than Taichu2 \bullet
 - ► Improvement of DAC design in TC3 verified

Taichu	Taichu2 mean
tł	threshold
	267 е-

u3 mean hreshold

~169 e-

