UNFOLDED DIFFERENTIAL HIGGS BOSON MEASUREMENTS AT LHC

- LHC Run 1 was the era of the Higgs boson discovery
- LHC Run 2,3 are the era of Higgs boson properties measurements
- Differential cross sections measured in fiducial phase spaces:
- Largely model independent
- Results can be compared between experiments and with many theories and models
- Exploring Higgs production differentially key to: o test SM predictions for full spectra of observables of interest
- probe for BSM hints
- Five decay channels considered with latest public results from ATLAS and CMS:
- all results based on full Run2 data $\sim 137 \mathrm{fb}^{-1}$
- first inclusive fiducial cross section measurement at 13.6 TeV

CHANNELS

	Channel	Dataset	Publication
CMS	$H \rightarrow \gamma \gamma$	$138 \mathrm{fb}^{-1}($ Run 2$)$	JHEP08(2023)040
CMS	$\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow 4 \mathrm{l}$	$137 \mathrm{fb}^{-1}$ (Run2)	1HEP07(2023109
ATLAS	$\begin{gathered} H \rightarrow \gamma \gamma \\ H \rightarrow Z Z \rightarrow 4 \end{gathered}$	139 fb-1(Run2)	JHEP05(2023)028
ATLAS	$\begin{gathered} \mathrm{H} \rightarrow \gamma \gamma \\ H \rightarrow Z Z \rightarrow 4 \mathrm{I} \end{gathered}$	$\begin{aligned} & 31.4 \mathrm{fb}^{-1} \text { (Run 3, 2022) } \\ & 29.0 \mathrm{fb}^{-1} \text { (Run 3, 2022) } \\ & \hline \end{aligned}$	Submitted to EP.
CMS	H \rightarrow WW	$137 \mathrm{fb}^{-1}$ (Run2)	JHEP03(2021)003
ATLAS	$\begin{gathered} \mathrm{ggH} \rightarrow \mathrm{WW} \\ \mathrm{VBFH} \rightarrow \mathrm{WW} \end{gathered}$	$139 \mathrm{fb}^{-1}(\mathrm{Run} 2)$	
CMS	$H \rightarrow \tau \tau$	$138 \mathrm{fb}^{-1}($ Run2)	Phys. Rev. Lett. 128,081805
CMS	$\mathrm{H} \rightarrow \mathrm{bb}$	$137 \mathrm{fb}^{-1}($ Run2)	リー
ATLAS	$\mathrm{H} \rightarrow \mathrm{bb}$	$136 \mathrm{fb}^{-1}($ Run2)	Phys. Rev. D 105,092003
ATLAS CMS		$3 \mathrm{ab}^{-1}(\mathrm{HL}-\mathrm{LHC}$ prospects)	CMS PAS FTR-22-00

CMS Pm FIDUCIAL CROSS SECTION

- Fiducial cross section measurements aim at providing the least model-dependent characterization of the Higgs boson properties
- However, SM assumed when calculating acceptance
- Measured data unfolded to correct for the detector effects, allowing for direct comparison with different theoretical predictions
- Fiducial phase space defined to closely match experimental acceptance and analysis selection
- Fiducial cross section measured differentially with many kinematical variables sensitive to BSM effects considered

CMS
 Pm

- Signal is reconstructed by two energetic photons
- Backgrounds are from SM YY, Yj, and jj
- Vertex assignment

○ ATLAS : neural network(vertex/track, calorimeter pointing)

- CMS: BDT combines tracking and calorimeter information
- Differential cross sections extracted from $m_{\gamma \gamma}$ fits
- Large number of kinematic observables
- Double-differential measurements

$\sigma_{\text {fid }}=73.4_{-5.3}^{+5.4}(\mathrm{stat})_{-2.2}^{+2.4}(\mathrm{sys}) \mathrm{fb}$
$\sigma_{\text {fid }}^{\text {th }}=75.4 \pm 4.1 \mathrm{fb}$

$$
\sigma_{\mathrm{fid}}=67 \pm 5(\text { stat }) \pm 4(\mathrm{sys}) \mathrm{fb}
$$

13 TeV
$\sigma_{\text {fid }}^{\text {th }}=64.2 \pm 3.4 \mathrm{fb}$

$$
\text { 13.6 TeV } \quad \sigma_{\mathrm{fid}}=76_{-13}^{+14} \mathrm{fb}
$$

$$
\sigma_{\mathrm{fid}}^{\mathrm{th}}=67.6 \pm 3.7 \mathrm{fb}
$$

- Signal is fully reconstructed using four leptons
- SM backgrounds: qqZZ, ggZZ and Z+X
- Large S/B ratio ~2:1 under the Higgs peak
- Full kinematic information due to great reconstruction of all final state objects
- Many observables sensitive to production and decay explored

- First ever differential cross section measurement in the $\mathrm{H} \rightarrow \tau \tau$ channel!
- Both measurements statistically dominated
- These channels are great handles for the large jet multiplicity and high Higgs boson p_{T} regions for the future combination

INCLUSIVE

- Run 3 first time part of the fiducial cross section as a function of sqrt(s)
- Several assumptions and extrapolations from Run2 for the early Run3 result that is statistically dominated
- Assuming SM values for fiducial acceptance and BR results extrapolated to full phase space
o $\mathrm{P}_{\mathrm{T}}(\mathrm{H})$ probes the perturbative QCD modelling of Higgs production
- $20-30 \%$ precision with full Run 2 statistics
- Variations of couplings distort the shape of $\mathrm{p}_{\mathrm{T}}(\mathrm{H})$
- Different models are provided by theorists to describe the shape distortions

CMS

© $\mathrm{ggH}^{\mathrm{p}} \mathrm{p}_{\mathrm{t}}(\mathrm{H})$ spectrum sensitive to anomalous values of Higgs couplings to \mathbf{b} and \mathbf{c} quarks - results with BR freely floating vs BR scaling with κ_{b} and κ_{c}

- ttH and $\mathrm{VH} \mathrm{p}_{\mathrm{T}}(\mathrm{H})$ spectrum sensitive to Higgs boson self coupling

*Many more interpretations in the dedicated EFT talk by Chen Zhou on Wednesday 29/11
- $\mathrm{y}(\mathrm{H})$ probes the PDFs and Higgs production mode
- measurement precision statistically dominated
- $20-30 \%$ precision with full Run 2 statistics

$H \rightarrow \gamma \gamma$

$\mathrm{H} \rightarrow 2 \mathrm{Z} \rightarrow 4 \mathrm{~L}$

$$
\underset{H \rightarrow \gamma \gamma}{ } \rightarrow 2=4 L
$$

© Jet kinematics useful for test of modelling of QCD radiation and production mechanism:

1) Number of central jets

$$
\mathrm{H} \rightarrow 22 \rightarrow 41
$$

© Jet kinematics useful for test of modelling of QCD radiation and production mechanism:

1) Number of central jets
2) P_{t} of leading jet

$H \rightarrow \tau \tau$

$$
\begin{gathered}
\mathrm{H} \rightarrow 2 \mathrm{Z} \rightarrow 4 \mathrm{~L} \\
\mathrm{H} \rightarrow \gamma \gamma
\end{gathered}
$$

- Jet kinematics useful for test of modelling of QCD radiation and production mechanism:

1) Number of central jets
2) Pt of leading jet $^{\text {j }}$
3) Number of b-jets, di-jet kinematics, and many more

- Differential measurements with respect to observables sensitive to H decay

1) Decay angles in the Higgs rest frame
2) Matrix element discriminants

$$
H \rightarrow 22 \rightarrow 4 L
$$

- Lepton kinematics vs number of jets in $\mathrm{H} \rightarrow \mathrm{WW}$

© Transverse momentum vs number of jets in $\mathrm{H} \rightarrow \gamma \gamma$ and $\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow 4$ I

o Z_{1} vs Z_{2} mass in $\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow 4$ I

© Run2 data set allows extensive study of differential Higgs boson cross sections
© A variety of measurements are reported using five decay channels and their combinations from ATLAS and CMS Collaborations:
- Observables targeting production and decay
- Double differential cross sections
- Many interesting variables not shown in this talk
- Differential distributions provide a handle to set limits on various BSM couplings:
o Keeping in mind that SM used to calculate acceptance effects
- No tension with SM predictions
- Precision in measurements is still largely statistically limited

O Many ideas ready for HL-LHC statistics!

CMS Projection $\quad 3000 \mathrm{fb}^{-1}(13 \mathrm{TeV})$

BACKUP

CMS $\quad \mathrm{Pm}$

Di-lepton events with missing p_{T}- SM background: WW, tt+tW, and $\tau \tau$
- BDTs used for better signal separation
- Template fits to $\mathrm{m}_{\mathrm{T}} / \mathrm{m}_{\|}$
- ATLAS has a dedicated analysis for ggH and VBFH

$m_{l l}[\mathrm{GeV}]$
- Differential measurements with respect to observables sensitive to H decay

1) Decay angles in the Higgs rest frame

CMS
 DECAY OBSERVABLES

© Differential measurements with respect to observables sensitive to H decay

1) Decay angles in the Higgs rest frame
2) Matrix element discriminants

$$
\mathcal{D}_{\text {alt }}(\vec{\Omega})=\frac{\mathcal{P}_{\text {sig }}(\vec{\Omega})}{\mathcal{P}_{\text {sig }}(\vec{\Omega})+\mathcal{P}_{\text {alt }}(\vec{\Omega})},
$$

$$
\mathcal{D}_{\text {int }}(\vec{\Omega})=\frac{\mathcal{P}_{\text {int }}(\vec{\Omega})}{2 \sqrt{\mathcal{P}_{\text {sig }}(\vec{\Omega}) \mathcal{P}_{\text {alt }}(\vec{\Omega})}}
$$

CMS
 Pm
 HIGGS PT INTERPRETATIONS

- ttH and $\mathrm{VH} \mathrm{p}_{\mathrm{T}}(\mathrm{H})$ spectrum sensitive to Higgs boson self coupling o possible to extract κ_{λ} limits from the differential cross section
- ATLAS made a combined fit to p_{T} Higgs differential distributions (from $\mathbf{H} \rightarrow \mathbf{Z Z} \rightarrow 4 \mathrm{I}$ and $\mathbf{H} \rightarrow \gamma \gamma$) and MVA distributions from VHbb and VHcc analysis to extrct κ_{b} and κ_{c}

$$
\mathrm{H} \rightarrow 22 \rightarrow 4 \mathrm{~L}
$$

(a)

(b)

$$
\begin{array}{ll}
H \rightarrow 2 Z \rightarrow 4 l & \mathrm{VH} \rightarrow 6 \mathrm{~B} \\
\mathrm{H} \rightarrow \gamma \gamma & \mathrm{VH} \rightarrow \mathrm{CC}
\end{array}
$$

○ In VBFH \rightarrow WW constrains on Wilson coefficients defined in SMEFT

- No sensitivity for a simultaneous fit, one coefficient at the time
- $\Delta \phi_{j j}$ and $p_{\perp}^{j_{1}}$ are the most sensitive variables
$\sigma \propto\left|\mathcal{M}_{\mathrm{EFT}}\right|^{2}=\left|\mathcal{M}_{\mathrm{SM}}+\sum_{i} \frac{c_{i}}{\Lambda^{2}} \mathcal{M}_{i}\right|^{2}=\left|\mathcal{M}_{\mathrm{SM}}\right|^{2}$
$+2 \sum_{i} \frac{c_{i}}{\Lambda^{2}} \operatorname{Re}\left(\mathcal{M}_{\mathrm{SM}}^{*} \mathcal{M}_{i}\right)+\sum_{i, j} \frac{c_{i} c_{j}}{\Lambda^{4}} \operatorname{Re}\left(\mathcal{M}_{i}^{*} \mathcal{M}_{j}\right)$
- Two scenarios if pure dimension 6 operators are considered or not

$H \rightarrow W W$

$H \rightarrow W W$

- Similar analysis in $\mathrm{H} \rightarrow \gamma \gamma$, setting constrains on Wilson coefficients
- No sensitivity for a simultaneous fit, one coefficient at the time
- Five differential distributions used to set limits
- Two scenarios if pure dimension 6 operators are considered or not

CMS
 $\stackrel{\mathrm{P}}{\mathrm{G}}$
 INTERPRETATIONS

© Z_{1} mass vs Z_{2} mass in $H \rightarrow Z Z \rightarrow 4$ I can be used to set limits on modifications of couplings with left and right handed leptons

- Pseudo-observables affecting angular distributions set to 0
- di-lepton invariant mass only sensitive variable

Four scenarios considered

