UNFOLDED DIFFERENTIAL HIGGS BOSON **MEASUREMENTS AT LHC**

on behalf of ATLAS and CMS Collaborations Higgs2023 Beijing, China 27 November 2023

Toni Šćulac

INTRODUCTION

• LHC Run 1 was the era of the Higgs boson discovery • LHC Run 2,3 are the era of **Higgs** boson **properties** measurements

• **Differential cross sections** measured in fiducial phase spaces:

- Largely model independent
- Results can be compared between experiments and with many theories and models
- Exploring Higgs production differentially key to: • test SM predictions for full spectra of observables of interest o probe for BSM hints
- Five decay channels considered with latest public results from ATLAS and CMS: ● all results based on full Run2 data ~137 fb⁻¹ In first inclusive fiducial cross section measurement at 13.6 TeV

	Channel	Dataset	Publication
CMS	$H \rightarrow \gamma \gamma$	138 fb ⁻¹ (Run2)	<u>JHEP08(2023)040</u>
CMS	H→ZZ→4I	137 fb ⁻¹ (Run2)	<u>JHEP07(2023)091</u>
ATLAS	$H \rightarrow \gamma \gamma$ $H \rightarrow ZZ \rightarrow 4I$	139 fb ⁻¹ (Run2)	<u>JHEP05(2023)028</u>
ATLAS	$H \rightarrow \gamma \gamma$ $H \rightarrow ZZ \rightarrow 4$	31.4 fb ⁻¹ (Run 3, 2022) 29.0 fb ⁻¹ (Run 3, 2022)	Submitted to EPJC
CMS	H→WW	137 fb ⁻¹ (Run2)	JHEP03(2021)003
ATLAS	ggH→WW VBFH→WW	139 fb ⁻¹ (Run2)	<u>EPJC83(2023)774</u> <u>Phys. Rev. D 108, 072003</u>
CMS	$H \rightarrow \tau \tau$	138 fb ⁻¹ (Run2)	<u>Phys. Rev. Lett. 128,081805</u>
CMS	H→bb	137 fb ⁻¹ (Run2)	<u>JHEP12(2020)085</u>
ATLAS	H→bb	136 fb ⁻¹ (Run2)	<u>Phys. Rev. D 105, 092003</u>
ATLAS CMS		3 ab ⁻¹ (HL-LHC prospects)	ATL-PHYS-PUB-2022-018 CMS PAS FTR-22-001

CHANNELS

FIDUCIAL CROSS SECTION

• Fiducial cross section measurements aim at providing the least model-dependent characterization of the Higgs boson properties

- However, SM assumed when calculating acceptance
- Measured data unfolded to correct for the detector effects, allowing for direct comparison with different theoretical predictions
- Fiducial phase space defined to closely match experimental acceptance and analysis selection • Fiducial cross section measured differentially with many kinematical variables sensitive to BSM
- effects considered

Reconstruction

- Signal is reconstructed by two energetic photons
- Backgrounds are from SM yy, yj, and jj
- Vertex assignment
 - ATLAS : **neural network**(vertex/track, calorimeter pointing)
 - CMS: **BDT** combines tracking and calorimeter information
- Differential cross sections extracted from $m_{\chi\chi}$ fits
- Large number of kinematic observables
- Double-differential measurements

 $H \rightarrow \gamma \gamma$

https://arxiv.org/abs/2208.12279

https://arxiv.org/abs/2306.11379

$H \rightarrow ZZ \rightarrow 4L$

https://arxiv.org/abs/2305.07532

https://arxiv.org/abs/2306.11379

• First ever differential cross section measurement in the $H \rightarrow \tau \tau$ channel!

- Both measurements statistically dominated
 A
- for the future combination

• These channels are great handles for the large jet multiplicity and high Higgs boson p_T regions

https://cds.cern.ch/record/2868084

https://arxiv.org/abs/2006.13251v2

- **Run 3** first time part of the fiducial cross section as a function of sqrt(s)
- dominated

INCLUSIVE

Several assumptions and extrapolations from Run2 for the early Run3 result that is statistically

• Assuming SM values for fiducial acceptance and BR results extrapolated to full phase space

https://arxiv.org/abs/2306.11379

- \odot p_T(H) probes the perturbative **QCD modelling** of Higgs production
 - 20 30% precision with full Run 2 statistics
- Variations of couplings **distort the shape** of $p_T(H)$
- Different models are provided by theorists to describe the shape distortions

HIGGS PT

HIGGS PTINTERPRETATIONS

• $ggH p_T(H)$ spectrum sensitive to anomalous values of Higgs couplings to b and c quarks • results with **BR freely floating** vs **BR scaling** with κ_b and κ_c • ttH and VH $p_T(H)$ spectrum **sensitive** to Higgs boson **self coupling**

https://arxiv.org/abs/2305.07532

https://arxiv.org/abs/2207.08615

*Many more interpretations in the dedicated EFT talk by Chen Zhou on Wednesday 29/11

 $H \rightarrow \gamma \gamma$

https://arxiv.org/abs/2305.07532

• y(H) probes the **PDFs** and Higgs **production** mode

• measurement precision statistically dominated

O 20 - 30% precision with full Run 2 statistics
 O

HIGGS RAPIDITY

NUMBER OF JETS

It kinematics useful for test of modelling of QCD radiation and production mechanism:

1) Number of central jets

https://arxiv.org/abs/2305.07532

https://arxiv.org/abs/2107.11486v2

https://arxiv.org/abs/2207.08615

P_T OF LEADING JET

• Jet kinematics useful for test of modelling of QCD radiation and production mechanism:

- 1) Number of central jets
- 2) p_T of leading jet

https://cds.cern.ch/record/2868084

https://arxiv.org/abs/2207.08615

OTHER JET KINEMATIC

• Jet kinematics useful for test of modelling of QCD radiation and prc

- 1) Number of central jets
- 2) p_T of leading jet
- 3) Number of b-jets, di-jet kinematics, and many more

https://arxiv.org/abs/2305.07532

https://arxiv.org/abs/2004.03969

https://arxiv.org/abs/2305.07532

https://arxiv.org/abs/2004.03969

• Lepton kinematics vs number of jets in $H \rightarrow WW$

DOUBLE DIFFERENTIAL

DOUBLE DIFFERENTIAL

• Transverse momentum vs number of jets in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4I$

https://arxiv.org/abs/2208.12279

https://arxiv.org/abs/2004.03969

• Z_1 vs Z_2 mass in $H \rightarrow ZZ \rightarrow 4I$

DOUBLE DIFFERENTIAL

- Run2 data set allows extensive study of differential Higgs boson cross sections
- A variety of measurements are reported using five decay channels and their combinations from ATLAS and CMS Collaborations:
 - Observables targeting production and decay
 - Double differential cross sections
 - Many interesting variables not shown in this talk
- Our Differential distributions provide a handle to set limits on various BSM couplings:
 - Keeping in mind that SM used to calculate acceptance effects
- No tension with SM predictions
- Precision in measurements is still largely statistically limited
 - Many ideas ready for HL-LHC statistics!

CONCLUSION

300

1.5

0.5

GeV

22

Events

Data / Pred

- **Di-lepton** events with **missing p**_T
- SM background: WW, tt+tW, and $\tau\tau$
- BDTs used for better signal separation
- Template fits to m_T / m_{II}
- ATLAS has a dedicated analysis for ggH and VBFH

$H \rightarrow WW$

DECAY OBSERVABLES

• Differential measurements with respect to observables sensitive to H decay

- 1) Decay angles in the Higgs rest frame
- 2) Matrix element discriminants

$$\mathcal{D}_{alt}\left(\vec{\Omega}\right) = \frac{\mathcal{P}_{sig}\left(\vec{\Omega}\right)}{\mathcal{P}_{sig}\left(\vec{\Omega}\right) + \mathcal{P}_{alt}\left(\vec{\Omega}\right)}, \qquad \mathcal{D}_{int}\left(\vec{\Omega}\right) = \frac{\mathcal{P}_{int}\left(\vec{\Omega}\right)}{2\sqrt{\mathcal{P}_{sig}\left(\vec{\Omega}\right) \ \mathcal{P}_{alt}\left(\vec{\Omega}\right)}},$$

HIGGS PTINTERPRETATIONS

• ttH and VH $p_T(H)$ spectrum **sensitive** to Higgs boson **self coupling** \odot possible to extract κ_{λ} limits from the differential cross section • ATLAS made a combined fit to p_T Higgs differential distributions (from $H \rightarrow ZZ \rightarrow 4I$ and $H \rightarrow \gamma\gamma$) and MVA distributions from VHbb and VHcc analysis to extrct κ_b and κ_c

DIJET INTERPRETATIONS

- Similar analysis in $H \rightarrow \gamma \gamma$, setting constrains on Wilson coefficients
 - No sensitivity for a simultaneous fit, one coefficient at the time
 - Five differential distributions used to set limits
 - **Two scenarios** if pure dimension 6 operators are considered or not

INTERPRETATIONS

right handed leptons

- Pseudo-observables affecting angular distributions set to 0
- di-lepton invariant mass only sensitive variable
- Four scenarios considered

• \mathbb{Z}_1 mass vs \mathbb{Z}_2 mass in $H \rightarrow \mathbb{Z} \rightarrow 4I$ can be used to set limits on modifications of couplings with left and

