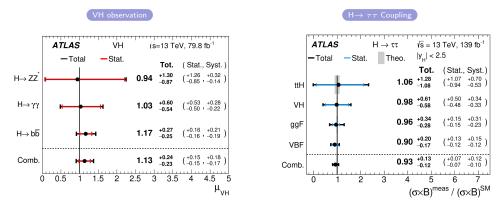
Searches with ${\rm H}{\rightarrow}\,\tau\tau$ at ATLAS

Antonio De Maria on the behalf of the ATLAS collaboration

Higgs2023

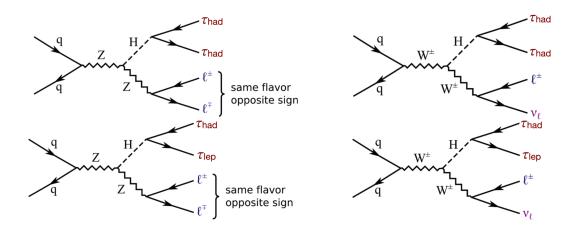


- Next slides are going to describe two new analyses recently published by the ATLAS experiment considering the $H \rightarrow \tau \tau$ decay:
 - Evidence of the VH, $H \rightarrow \tau \tau$ process with the ATLAS detector in Run 2
 - Search for the non-resonant production of Higgs boson pairs via gluon fusion and vector-boson fusion in the $b\bar{b}\tau^+\tau^-$ final state in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector Reference
- Results from both analyses are presented for the first time in a conference
- Results will be also discussed in the following talks:
 - "Measurements of third generation Higgs boson Yukawa couplings" by C. Palmer
 - "Di-Higgs searches, status and future prospects: non-resonant" by M. Valente
 - "Probing the nature of electroweak symmetry breaking with Higgs boson pair-production at ATLAS" by T.J. Khoo
 - "Constraining the Shape of the Higgs Potential Through a Search for Higgs Boson Pairs in the bbtautau Final State with the ATLAS Experiment" by B. Moser

Introduction to $VH, H \rightarrow \tau \tau$ analysis

- Higgs boson associated production with a vector boson (*VH*) is one of the four main Higgs boson production modes at LHC
- $H \rightarrow \tau \tau$ decay important for Higgs to fermion Yukawa coupling measurement
- Both processes have been already observed separately:
 - VH measured with an observed (expected) significance of 5.3 (4.8) σ from early Run2 combination of $H \rightarrow ZZ^*$, $H \rightarrow \gamma\gamma$ and $H \rightarrow b\bar{b}$ decays
 - $H \to \tau \tau$ cross-section measurement per production mode focused only on associated production with V decaying hadronically

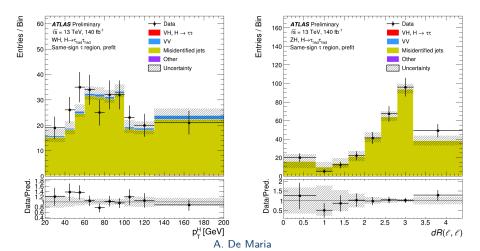
• $VH, H \rightarrow \tau \tau$ process with V decaying leptonically still not observed


Previous analysis with Run1 dataset only able to set cross-section upper limit VH-R1

Cross-section measurement of VH, $H \rightarrow \tau \tau$ with V decaying leptonically

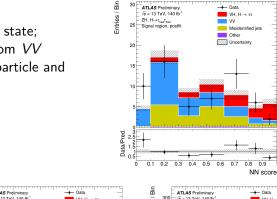
- Considering final states with at least one τ decaying hadronically $(\tau_{lep}\tau_{had})$ and $\tau_{had}\tau_{had}$) and the V decaying leptonically $(W \to l\nu, Z \to ll \text{ with } l = e, \mu)$
 - For $WH(\tau_{lep}\tau_{had})$, final states with two electrons/muons also included, unlike previous Run1 analysis
- Final states with both τ decaying leptonically not considered to preserve orthogonality with $H \to WW^*$ analyses

- Event selection divided into two main region types:
 - *Preselection*: used as baseline selection to define validation regions for the background modelling
 - *Signal Region*: impose additional criteria on top of the Preselection to enhance the signal over background ratio

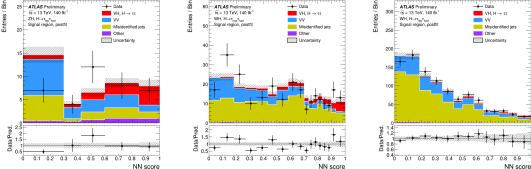

Selection	WH, $H \rightarrow \tau_{lep} \tau_{had}$	$WH, H \rightarrow \tau_{had}\tau_{had}$	$ZH, H \rightarrow \tau_{lep}\tau_{had}$	$ZH, H \rightarrow \tau_{had} \tau_{had}$
Preselection	exactly 1 $\tau_{had-vis}$ exactly 2 ℓ <i>b</i> -jet veto	exactly 2 $\tau_{had-vis}$ exactly 1 ℓ <i>b</i> -jet veto	exactly 1 $\tau_{had-vis}$ exactly 3 ℓ same-flavour, OS ℓ pair $m_{\ell\ell} \in [81, 101]$ GeV	exactly 2 $\tau_{had-vis}$ exactly 2 ℓ same-flavour, OS ℓ pair $m_{\ell\ell} \in [71, 111]$ GeV
Signal Region	$ \begin{vmatrix} 1 \tau_{\text{had-vis}} \text{ and } 1 \tau_{\text{lep}} \text{ OS} \\ \text{exactly } 2 \ell \text{ SS} \\ \sum_{\ell} p_{\text{T}}(\ell) + p_{\text{T}}(\tau_{\text{had-vis}}) > 90 \text{ GeV} \\ m_{ee} \notin [80, 100] \text{ GeV} \end{vmatrix} $	$ \begin{array}{ c c c c c } & \operatorname{exactly} 2 \ \tau_{\mathrm{had-vis}} \operatorname{OS} \\ 0.8 < \Delta R(\tau_{\mathrm{had-vis}}, \tau_{\mathrm{had-vis}}) < 2.8 \\ & \Sigma_{\tau_{\mathrm{had-vis}}} p_T(\tau_{\mathrm{had-vis}}) > 100 \ \mathrm{GeV} \\ & m_T(\ell, E_T^{\mathrm{miss}}) > 20 \ \mathrm{GeV} \end{array} $	$ \begin{array}{c} \mbox{exactly 1 } \tau_{had-vis} \mbox{ and 1 } \tau_{lep} \mbox{ OS } \\ \sum_{\tau_{had-vis}, \tau_{lep}} p_{T}(\tau) > 60 \mbox{ GeV} \end{array} $	exactly 2 $\tau_{\text{had-vis}}$ OS $\sum_{\tau_{\text{had-vis}}} p_{\text{T}}(\tau) > 75 \text{ GeV}$
HIGGS BOSON MASS WINDOW CUT (ONLY APPLIED IN THE NN-BASED ANALYSIS)	$m_{2T} \in [60, 130] \text{ GeV}$	$m_{2T} \in [80, 130] \text{ GeV}$	$m_{\rm MMC} \in [100, 170] {\rm GeV}$	$m_{\text{MMC}} \in [100, 180] \text{ GeV}$

- Main analysis results extracted from a fit over a Neural Network (NN) score in the Signal Regions + mass window cut around the Higgs boson mass value
 - Cut-based analysis also performed doing a fit of the di- τ mass observable in the Signal Regions, similar to Run1 analysis

Background estimation and validation



- Major background sources are VV (irreducible) and Z+jets (reducible) processes, the latter having a jet which can be mis-identified as a light lepton or τ_{had}
- Contribution from VV events estimated through simulated samples
- Contribution from events with mis-identified objects (*Fake*) is estimated using the *Fake Factor* method, considering also events with multiple mis-identified objects
- Background modelling is evaluated in several regions and additional uncertainties are assigned based on the residual modelling mismatch between data and Fake prediction

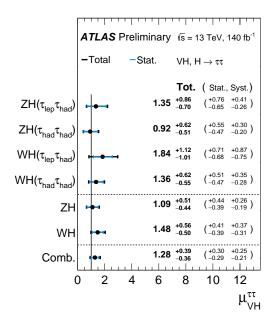

Neural Network training

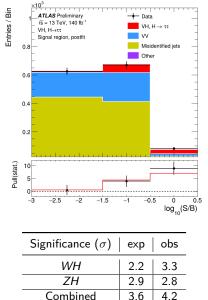
NNs trained separately for each final state; training done to distinguish signal from VVbackground using a combination of particle and event level variables

30

ATLAS Preliminary /s = 13 TeV, 140 fb'

+ Data

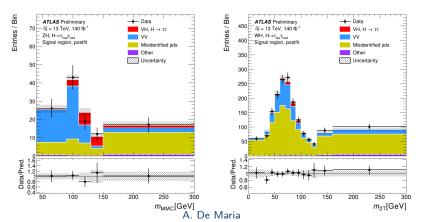

VH. $H \rightarrow \tau \tau$

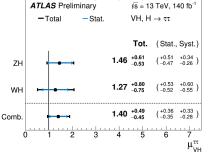

0.9

Neural Network analysis fit results

- Results extracted from a simultaneous fit of the NN score in all final states
- Observed (expected) significance of 4.2 (3.6) σ : evidence of VH, $H \rightarrow \tau \tau$ process
- Measured cross section $8.5^{+2.6}_{-2.4}$ fb, with respect to SM prediction 6.59 ± 0.03 fb

Uncertainty breakdown impact

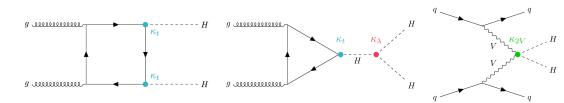

Source of uncertainty	$\delta \mu / \mu_{ m VH}^{ au au}$ [%]
Hadronic τ -lepton decay	9
Simulated background sample size	9
Misidentified jets	5
Jet and $E_{\rm T}^{\rm miss}$	4
Theoretical uncertainty in signal	4
Theoretical uncertainty in top-quark, VV and VVV processes	4
Electrons and muons	2
Luminosity	1
Flavour tagging	< 1
Total systematic uncertainty	16
Total statistical uncertainty	23
Total	30


- Largest impact from data statistical uncertainty
 - Benefit from adding Run3 data to the current full Run2 dataset
- Among the systematic uncertainties, major impact from τ_{had} related uncertainties and limited statistics from simulated background samples
- Sizeable contribution also from $\text{Jet}/\text{E}_T^{\text{miss}}$, mis-identified objects and signal theory uncertainties

10 / 19

Cut-based analysis results

- Perform likelihood fit on di-τ mass observable; poor mass resolution expected due to the neutrinos in the final state
- Observed (expected) significance of 3.5 (2.5) σ . Less stringent results compared to NN fit because of lower signal/background separation power, especially for *WH* final state

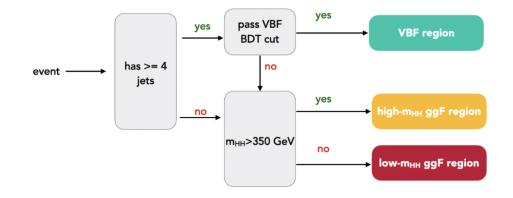


- Evidence of VH, $H \rightarrow \tau \tau$ process reached with an observed (expected) significance of 4.2 (3.6) σ
- Two different analyses have been performed:
 - A Neural Network analysis; networks have been trained to separate signal from VV background using both particle and event level variables. Provides best analysis sensitivity
 - A Cut-based analysis considering the di- τ mass observable as in Run1 analysis. Provide a useful cross-check of the Neural Network analysis, though less stringent because of the lower signal/background separation power
- Largest impact on the uncertainty coming from data statistical component

Di-Higgs production

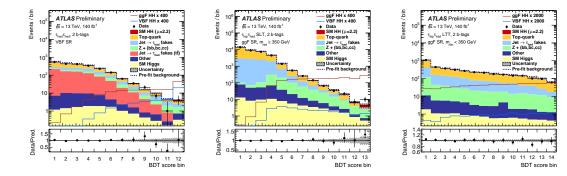
- Higgs potential influenced by Higgs boson trilinear self coupling term λ_{HHH}
- Direct way to measure the coupling is through Higgs boson pair production
- Much smaller cross-section compared to single Higgs boson production ($\simeq 10^{-3})$
- Production mainly through gluon fusion (ggF) and vector boson fusion (VBF)
 - ggF provides most of the sensitivity to Higgs boson self-coupling modifier (κ_{λ})
 - VBF provides a unique way to probe VVHH vertex (κ_{2V})

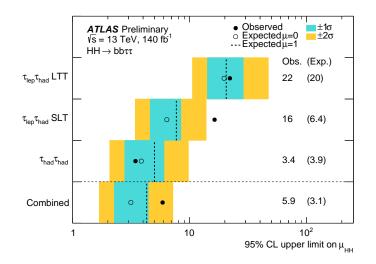
Higgs Decay	bb	WW	π	ZZ	γγ
bb	34%				
ww	25%	4.6%			
π	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.07%	
уу	0.26%	0.10%	0.03%	0.01%	<0.001%



$\tau_{\rm had} \tau_{\rm had}$ category		$\tau_{\rm lep} \tau_{\rm had}$ ca	$\tau_{\rm lep} \tau_{\rm had}$ categories		
STT	DTT	SLT	LTT		
	e/µ	selection			
No loos	se e/μ	Exactly one loose e/μ			
		$e(\mu)$ must be tight (med			
		$p_{\rm T}^e > 25, 27 { m ~GeV}$	18 GeV $< p_T^e < SLT$ cut 15 GeV $< p_T^{\mu} < SLT$ cut		
		$p_{\rm T}^{\hat{\mu}} > 21, 27 \; { m GeV}$	$15 \text{ GeV} < p_{\mathrm{T}}^{\hat{\mu}} < \text{SLT cut}$		
$ au_{ m had-vis}$ selection					
Two loos	$\epsilon \tau_{had-vis}$	One loos	$e \tau_{had-vis}$		
		$ \eta <$	2.3		
$p_{\rm T}$ > 100, 140, 180 (25) GeV	$p_{\rm T} > 40 \; (30) \; {\rm GeV}$		$p_{\rm T} > 30~{ m GeV}$		
	Jet s	selection			
	≥ 2 jets v	with $ \eta < 2.5$			
Leading jet $p_{\rm T} > 45 \text{ GeV}$	Trigger dependent	Leading jet $p_{\rm T} > 45 \text{ GeV}$	Trigger dependent		
	Event-le	evel selection			
Trigger requirements passed					
Collision vertex reconstructed					
$m_{\tau\tau}^{\rm MMC} > 60 { m ~GeV}$					
Opposite-sign electric charges of $e/\mu/\tau_{\text{had-vis}}$ and $\tau_{\text{had-vis}}$					
Exactly two <i>b</i> -tagged jets					
		$m_{bb} < 1$	50 GeV		

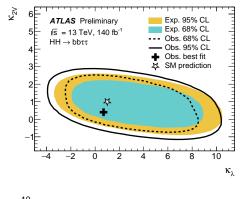
- Object definition/analysis main categorisation from previous publication Reference
- Considering three channels including:
 - $\tau_{lep}\tau_{had}$ events selected using Single Lepton Trigger (SLT)
 - $\tau_{lep}\tau_{had}$ events selected using Lepton+Tau Trigger (LTT)
 - $\tau_{had}\tau_{had}$ events selected using Single+DiTau Triggers

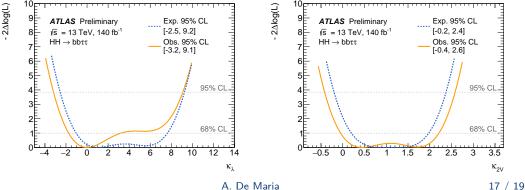

Signal Region categorisation


- Finer event categorisation with respect to the previous analysis
- Use Boosted Decision Trees (BDT) to select events with characteristic features of the VBF production
- Events not falling in the VBF signal region are split in two regions of m_{HH} :
 - ggF high- m_{HH} : targeting ggF production with k_{λ} values close to SM
 - ggF low- m_{HH} : targeting ggF production with k_{λ} values largely different from SM

- Additional BDTs are trained in each signal region to discriminate signal against background
 - In total nine BDTs considering $\tau_{lep}\tau_{had}$ SLT $/\tau_{lep}\tau_{had}$ LTT $/\tau_{had}\tau_{had}$ regions times VBF/ggF high- m_{HH} /ggF low- m_{HH} signal regions
- BDT scores are then fit simultaneously to extract the coupling strength parameters
- Fit also includes m_{II} distribution from a control region to constrain the normalisation of the Z+heavy flavour background

95% upper limit results on the signal strength

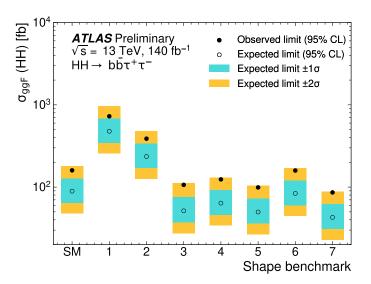




- Observed limit on μ_{HH} from the combined fit is less stringent than the expected one as a result of an excess in $\tau_{lep}\tau_{had}$ SLT SR
- Local significance of this excess is 2.3 σ with respect to SM hypothesis considering $\tau_{lep}\tau_{had}$ SLT SR standalone fit
- Expected sensitivity to $\mu_{H\!H}$ improved by 20% with respect to the previous results
- Sensitivity still primarily limited by the statistical uncertainty on the data

Coupling modifiers results

- Combined fit allows to set observed (expected) 95% confidence intervals for:
 - $\kappa_{\lambda} \in [-3.2, 9.1]$ ([-2.5, 9.2]) (assuming $\kappa_{2V} = 1$)
 - $\kappa_{2V} \ \epsilon$ [-0.4, 2.6] ([-0.2, 2.4]) (assuming $\kappa_{\lambda} = 1$)
- Expected sensitivity improved by 10% (19%) for κ_{λ} (κ_{2V}) with respect to the previous results



EFT Interpretation

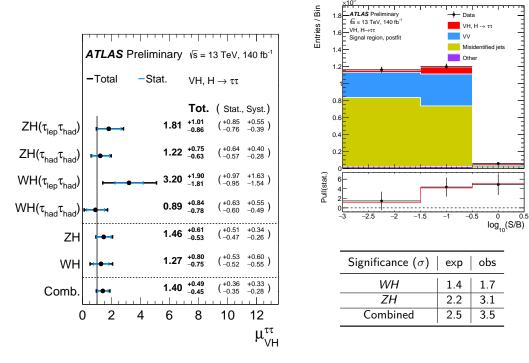
- Cross-section limits are placed on seven HEFT shape benchmarks ($\mathbb{R}^{eference}$), built to represent different features of m_{HH} distributions
- VBF *HH* contribution on the *m_{HH}* shape benchmark limits expected to be negligible, so ignored

- An updated search for HH
 ightarrow bb au au analysis has been presented
- Object definition/Analysis main categorisation inherited from previous paper; considering now improved event categorisation and multivariate analysis strategy.
- With respect to previous analysis:
 - Expected sensitivity to $\mu_{H\!H}$ is improved by 20%
 - Expected sensitivity improved by 10% (19%) for κ_{λ} (κ_{2V})
- Sensitivity still primarily limited by the statistical uncertainty on the data

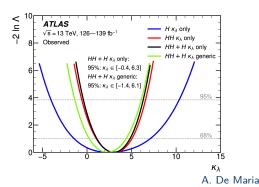
Thanks For Your Attention

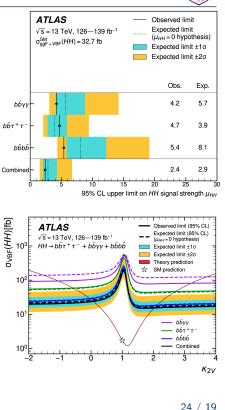
Backup

VH, $H \rightarrow \tau \tau$ *Fake* estimation


- Fake Factor is defined as f = r/(1 r), where r represents the selection efficiency of misidentified objects (τ_{had} or light lepton)
 - measured in a dedicated Z+jets control region enriched in Fake
- Expected number of misidentified jets in a given region is obtained using the *Fake Factor* to scale the number of events selected in an orthogonal region in which one or more requirements are inverted
- Background modelling validation in several regions

Category	Region	Cuts	Major process contributing to the background from misidentified jets
WH, $H \rightarrow \tau_{\rm had} \tau_{\rm had}$	W+jets	PRESELECTION same-sign $\tau_{had-vis}$ $m_{T}(\ell, E_{T}^{miss}) < 60 \text{ GeV}$	W+jets ~ 70%
	$Z \rightarrow \tau \tau$	$\frac{P_{\text{RESELECTION}}}{m_{2\text{T}} < 60 \text{ GeV}}$ $m_{\text{T}}(\ell, E_{\text{T}}^{\text{miss}}) < 40 \text{ GeV}$	$Z \to \tau\tau \sim 50\%$
	top-quark	$\frac{PRESELECTION}{\# b \text{ jets} > 0}$	$t\bar{t} \sim 70\%$
$WH, H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	$Z \rightarrow \tau \tau$	PRESELECTIONopposite-sign light leptons $m_{coll}(\ell, \ell) \in [60, 120]$ GeV $m_{ee} \notin [80, 100]$ GeV	$Z ightarrow au au \sim 40\%$
	All Same Sign	PRESELECTION all objects with same-sign $m_{ee} \notin [80, 100]$ GeV	<i>W</i> +jets ~ 70%


VH, $H \rightarrow \tau \tau$ Cut-based analysis results



Di-Higgs Combination arxiv-2211.01216

- Combination of $HH \rightarrow bbbb$, $HH \rightarrow bb\gamma\gamma$ and $HH \rightarrow bb\tau\tau$ final states
- 95% confidence limit (CL) on the di-Higgs cross-section normalised to SM prediction: $\mu_{HH} < 2.4 (2.9)$ obs. (exp)
- Combination with single-Higgs measurements, with no constraint on other k, lead to k_λ constraint at 95% CL:
 -1.4 (-2.2) < k_λ < 6.1 (7.7) obs. (exp)
- Constraint on k_{2V} at 95% CL: $0.1(0.0) < k_{2V} < 2.0(2.1)$ obs. (exp)

