Measurements of third generation Higgs boson Yukawa couplings

Chris Palmer (UMD/CMS) November 27th, 2023 For

Overview

- The Higgs boson has been decisively shown to facilitate electroweak symmetry breaking from its coupling strength being proportional to mass.
- This talk will cover 3rd generation Higgs-fermion Yukawa couplings established by ATLAS and CMS Collaborations.
 - ttH production
 - $H \rightarrow b\overline{b}$ decays
 - $H \rightarrow \tau \overline{\tau}$ decays

Higgs 2023, Beijing

https://www.nature.com/articles/s41586-022-04892-x

Overview

- The Higgs boson has been decisively shown to facilitate electroweak symmetry breaking from its coupling strength being proportional to mass.
- This talk will cover 3rd generation Higgs-fermion Yukawa couplings established by ATLAS and CMS Collaborations.
 - ttH production
 - $\bullet H \to b \overline{b} \text{ decays}$
 - $H \rightarrow \tau \overline{\tau}$ decays

Higgs 2023, Beijing

https://www.nature.com/articles/s41586-022-04892-x

tTH Production Overview

- With top Yukawa coupling and two top quarks in the final state give a variety of experimental opportunities.
 - Direct confirmation of the coupling with the observation
 - Searches for CP violation with enough signal and S/B in reconstructable channels.
 - Searches for <u>invisible Higgs boson</u> <u>decays</u> with double top tagging and lots of missing transverse momentum.

tTH Production Overview

More details Thursday:

• With top Yukawa cou quarks in the final standard association with top quark at the ATLAS detector (Ximo Poveda) experimental opportunities.

- Direct confirmation of the coupling with the observation
- Searches for CP violation with enough signal and S/B in reconstructable channels.
- Searches for invisible Higgs boson decays with double top tagging and lots of missing transverse momentum.

Chris Palmer - November 27, 2023

t

$t\bar{t}H, H \rightarrow \gamma\gamma$

GeV

Sum of Weights /

Cont. Bkg.

Data

- Anchoring on the diphoton decay gives experimental access to production mode tagging.
- ATLAS and CMS have made great use of this in their Run 2 H $\rightarrow \gamma\gamma$ measurements.
- Both also made dedicated channels for tH production.

Higgs 2023, Beijing

$t\bar{t}H, H \rightarrow multi-leptons$

 Many sources of leptons when there are 2-4 vector bosons in the final state.

 Optimization entails specific kinematic variables and b-tagging multiplicity as inputs for BDTs for each channel.

Higgs 2023, Beijing

HIG-19-008 Chris Palmer - November 27, 2023

ATLAS-CONF-2019-045

$t\overline{t} + b\overline{b}/X$ Backgrounds

• Common

- Four flavor scheme (4SF)
 - More directly from the ME
- Five FS still needed for the the charm and light flavor components.

• Differences

- PS: Pythia vs Herwig (ATLAS), Pythia uncertainties (CMS)
- CMS floats $t\bar{t} + B/C/LF$ freely
- ATLAS floats $t\bar{t} + b\bar{b}$; $t\bar{t} + b$ extrapolation; $t\bar{t} + C$ 100% prior; $t\bar{t} + LF$ tighter prior

merged tt+jets sample

Higgs 2023, Beijing

$t\bar{t}H, H \rightarrow b\bar{b}$

- Primary analysis goals: STXS bin and inclusive signal measurements
- Search anchored in 1-2 muons or electrons.
- Differential in number of b-tagged jets and p_T of the Higgs boson candidate.
- In each event a "Reconstruction BDT" is evaluated under each b-jet association assumption (i.e., from the Higgs or from a top).
 - The assumption yielding the highest score is used to assign the dijet for Higgs candidate.
- In the 1-lepton channel, a topology of large-R (anti- k_T 1.0) jets containing two small-R jets is analyzed for events with $p_T^H > 300$ GeV.

• A DNN is used to select events to put into this topology.

Higgs 2023, Beijing

Chris Palmer - November 27, 2023

<u>HIGG-2020-23</u>

9

$t\bar{t}H, H \rightarrow b\bar{b}$

 Classification
 BDTs are used in all signal regions
 to separate
 signal from
 background.

Higgs 2023, Beijing

Chris Palmer - November 27, 2023

HIGG-2020-23

10

 $t\bar{t}H, H \rightarrow b\bar{b}$

 Primary analysis goals: STXS bin and inclusive signal measurements

 Anchored in 1-2
 leptons (electrons or muons) as well as a full hadronic analysis.

 Relies on jet and b-jet multiplicity for categorization.

Chris Palmer - November 27, 2023

Higgs 2023, Beijing

$t\bar{t}H, H \rightarrow b\bar{b}$ Inclusive

STXS

CMS Preliminary				138 fb ⁻¹ (13 TeV)		
			μ	tot	stat	syst
FH	H	н	0.84	+0.49 -0.46	+0.25 -0.25	+0.42 -0.39
SL	H		0.46	+0.33 -0.33	+0.21 -0.21	+0.25 -0.26
DL	H- H		-0.23	+0.41 -0.42	+0.31 -0.31	+0.26 -0.29
2016	H		0.49	+0.42 -0.40	+0.25 -0.25	+0.33 -0.32
2017	H a H		0.32	+0.38 -0.37	+0.24 -0.24	+0.29 -0.28
2018	H		0.23	+0.34 -0.34	+0.21 -0.21	+0.27 -0.27
Combined	H		0.33	+0.26 -0.26	+0.17 -0.16	+0.21 -0.21
	0		5			10
					ĥ	$\hat{u} = \hat{\sigma} / \sigma_{SM}$

 Inclusive signal extraction is performed without STXS categorization.

 \bullet STXS categorization is made with an additional neural network that gives the most probable Higgs $p_T.$

 \bullet Based on the most likely Higgs p_T a category is assigned.

Higgs 2023, Beijing

Chris Palmer - November 27, 2023

<u>CMS-PAS-HIG-19-011</u> **12**

$t\bar{t}H, H \rightarrow b\bar{b}$ Inclusive

STXS

 $\hat{\mu} = \hat{\sigma} / \sigma_{\text{SM}}$

Higgs 2023, Beijing

Chris Palmer - November 27, 2023

<u>CMS-PAS-HIG-19-011</u> **13**

 Both ATLAS and CMS analyses rely on W/Z boson leptonic decays from trigger to high-level selection.

• $Z \rightarrow \nu\nu, W \rightarrow \ell\nu$, and $Z \rightarrow \ell\ell$

- The primary goals of the Run 2 analyses are inclusive signal strength and STXS bin measurements.
 - \bullet Binning primarily in $p_{T,V}$ but also in jet multiplicity for ZH 150-250 GeV bin.

Higgs 2023, Beijing

- •Small-radius (anti- $k_t R = 0.4$) and large-radius (anti- $k_t R = 0.8$ for CMS and R = 1.0) topologies are both explored, and a combination of the two has been made.
- Overlap: CMS chooses event by event with priority given to the small-radius signal region, while ATLAS uses the large-radius topology when $p_{T,V} > 400$ GeV in the combination.

- Small-radius (anti- $k_t R = 0.4$) and large-radius (anti- $k_t R = 0.8$ for CMS and explored, and a combination of the two has been made.
- Overlap: CMS chooses event by event with priority given to the small-radiu the large-radius topology when $p_{\rm T,V}>400~{\rm GeV}$ in the combination.

Thursday: <u>Study of the boosted Higgs</u> <u>boson production (Jie Xiao)</u>

p

B2

Higgs 2023, Beijing

<u>HIGGS-2018-51</u>

V(leptonic)Z, $Z \rightarrow b\overline{b}$, Resolved Validation

 Both analyses use the VZbb signature as a standard candle for validation of the primary analysis.

- ATLAS default is Sherpa NLO MC
- •V+HF is decomposed into bb, bc, bl, and cc.
 - V+HF normalization floats and bc, bl, cc have uncertainties relative to bb.
- W+HF shape uncertainties are assessed by comparing to MadGraph5_aMC@NLO.
- Z+HF shape uncertainties are assessed in dijet sidebands with comparisons to data.
- Signal regions are BDT outputs. Higgs 2023, Beijing Ch

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 BDT_{VH} output Resolved (<u>HIGGS-2018-51</u>), boosted (<u>HIGGS-2018-52</u>) and combo (<u>ATLAS-CONF-2021-051</u>)

- Shape and uncertainties for V+jets MC is critical for VHbb.
 - CMS default is MadGraph5_aMC@NLO MC
- V+jets is decomposed into V+b(b), V+c, and V+LF.
 - \bullet All components have floating normalizations and linear $p_{T,V}$ shape uncertainties.
- DNN (BDT) outputs for resolved (boosted) are used for signal region observables.

Higgs 2023, Beijing

Chris Palmer - November 27, 2023

<u>CMS-PAS-HIG-20-001</u> **19**

$V(leptonic)H, H \rightarrow bb$

• Both analyses see WH near the SM while there are divergent results in the ZH channels.

Higgs 2023, Beijing

HIGGS-2018-51

• ATLAS STXS measurements are highly compatible with the SM while there is some discrepancy with the SM in the CMS results.

- ATLAS STXS measurements are highly compatible with the SM while there is some discrepancy with the SM in the CMS results.
- CMS has been studying these results and underlying analysis features during the past year.
- CMS is nearly ready to share the final results, so keep checking arxiv in the coming weeks.

Higgs 2023, Beijing

$V(\text{hadronic})H, H \rightarrow b\overline{b}$

- Both the bosons need to be reconstructed in large-radius (R = 1.0) jets.
- The multijet component of the background is estimated using a datadriven template from control regions with in situ transfer factor.

$$\hat{\mu} = 1.4^{+1.0}_{-0.9}$$

Higgs 2023, Beijing

Chris Palmer - November 27, 2023

ATLAS-CONF-2023-067 23

$ZH(ZZ) \rightarrow b\overline{b}b\overline{b}$

- This analysis studies new methodologies on larger cross section 4b final states.
- The selection requires 4 b-tagged jets with kinematic requirements slightly tighter than 4 jet triggers.
- A neural network considers all potential combinations, but at least one of the combinations must be compatible with the masses of the signal (ZH or ZZ).

Higgs 2023, Beijing

Chris Palmer - November 27, 2023

24

$ZH(ZZ) \rightarrow b\overline{b}b\overline{b}$

25

CMS-PAS-HIG-22-011

• Mulitjet background is estimated from data using 4j3b.

- The 4j3b data requires reweighting to match the kinematics of the signal region.
- Trained and validated in a sideband region.

Higgs 2023, Beijing

Signal strength expected (stat-only) Signal strength observed Expected Limit at 95% CL (stat-only) Observed Limit at 95% CL

Higgs 2023, Beijing

Chris Palmer - November 27, 2023

ZH

 $1^{+1.5}_{-1.4}$ $(1^{+1.1}_{-1.1})$

 $2.2^{+0.9}_{-0.8}$

2.9 (2.3)

5.0

• The primary systematic uncertainty is from an updated version of hemisphere mixing of 4j3b samples to generate synthetic data.

• Future plans include reducing this systematic uncertainty so these measurements can be made by HL-LHC.

CMS-PAS-HIG-22-011

26

ZZ

 $1^{+1.9}_{-1.7}$ $(1^{+1.4}_{-1.3})$

 $0.0^{+2.0}_{-1.7}$

3.8 (2.8)

3.8

VBF H, H $\rightarrow b\bar{b}$

- Adversarial neural network used for classification on two small-radius b-jets and two other jets.
- • $m_{\rm bb}$ dependence removed so it can be fit.
- QCD fit from template and Zbb template comes from Zµµ with data imbedding.

Higgs 2023, Beijing

$VBFH, H \rightarrow bb$

GeV

events /

S/(S+B) weighted

Data-QCD

90.8 fb⁻¹ (13 TeV)

— ±1σ (syst)

--- ±1 σ (syst \oplus stat)

• Two small-radius b-jets

DeepJet b-tagger

- Two additional jets
- Categorize with a BDT with kinematic and btagging inputs.
 - *m*_{bb} independent
- • $m_{\rm bb}$ is fit observable • QCD is fit directly in SR.
- Minimal (<10%) bias
 - No additional uncertainties

90.8 fb⁻¹ (13 TeV)

Higgs 2023, Beijing

Chris Palmer - November 27, 2023

Best fit σ/σ_{SM}

28

VBF H, H $\rightarrow b\bar{b}$

• One large-radius bb jet and two small-radius jets are selected.

- The large-radius jet mass is the observable, and the DeepDoubleBvL-v2 is used to define a signal and control region.
- QCD template is a fit of the control region multiple by a transfer function.

Higgs 2023, Beijing

Chris Palmer - November 27, 2023

<u>CMS-PAS-HIG-21-020</u> **29**

VBF H, H $\rightarrow b\bar{b} + \gamma$

- Unique assess to WBF.
- Triggering on the photon at L1 leaves the rest of the system unbiased.
- HLT requires 1 photon and 3-4 jets.

Higgs 2023, Beijing

$H \to \tau \overline{\tau}$

• Triggers rely on au decay products.

Like H → γγ all production channels accessible to the analysis.
VBF is one of the most sensitive.

GeV GeV 100 ATLAS Data ATLAS $\sqrt{s} = 13 \,\mathrm{TeV}, 139 \,\mathrm{fb}^{-1}$ Events / 10 Uncertainty 10 $\sqrt{s} = 13 \,\text{TeV}, 139 \,\text{fb}^{-1}$ Uncertainty $\rightarrow \tau \tau (0.93 \times SM)$ $H \rightarrow \tau \tau (0.93 \times \text{SM})$ $H \rightarrow \tau_{\rm lep} \tau_{\rm had}$ 80 $H \rightarrow \tau_{had} \tau_{had}$ Events $Z \rightarrow \tau \tau$ VBF 1 SR 50 - VBF 1 SR Other backgrounds Other backgrounds Misidentified τ Misidentified τ 60 40 30 40 20 20 Bkg Data – Bkg Data -25 50 75 150 175 200 75 100 125 150 125 175 m^{MMC} [GeV

Higgs 2023, Beijing

$H \rightarrow \tau \overline{\tau}$

STXS categorization is rich and follows the reconstructed Higgs boson and production mode topologies.

Higgs 2023, Beijing

$H \to \tau \overline{\tau}$

 STXS categorization is rich and follows the reconstructed Higgs boson and production mode topologies.

Higgs 2023, Beijing

 STXS results in bins of Higgs p_{T} , 0 or 1 jets, and m_{ii} for **VBF.** CMS also has a dedicated ttH, $H \rightarrow \tau \tau$ analysis.

<u>HIG-19-010</u> (ggH, VBF, VH) <u>HIG-19-008</u> (ttH)

34

Chris Palmer - November 27, 2023

Higgs 2023, Beijing

Higgs 2023, Beijing

Higgs 2023, Beijing

Chris Palmer - November 27, 2023

36

$\mathsf{VH},\mathsf{H}\to\tau\bar{\tau}$ • NN and mass-fit analyses • Evidence-level signal!

Significance (σ)	exp	obs
WH	2.2	3.3
ZH	2.9	2.8
Combined	3.6	4.2

	A	flas f	relimi	nary	√s = 1	3 TeV, ⁻	140 fb⁻¹
	-7	Fotal	-Sta	t.	VH, F	I ightarrow au au	
					Tot.	(Stat.,	Syst.)
$ZH(\tau_{lep}\tau_{had})$	F	•		1.35	+0.86 -0.70	(^{+0.76} 0.65	+0.41 -0.26)
$ZH(\tau_{had}^{}\tau_{had}^{})$	1-4	-1		0.92	+0.62 –0.51	(^{+0.55} 0.47	^{+0.30} -0.20)
$\text{WH}(\tau_{\text{lep}}\tau_{\text{had}})$	۲			1.84	+1.12 -1.01	(^{+0.71} 0.68	+0.87 -0.75)
$WH(\tau_{had}\tau_{had})$	B	— 1		1.36	+0.62 0.55	(^{+0.51} 0.47	+0.35 -0.28)
ZH	-	H		1.09	+0.51 0.44	(^{+0.44} _0.39	+0.26 -0.19)
WH				1.48	+0.56 –0.50	(^{+0.41} _0.39	+0.37 -0.31)
Comb.		•		1.28	+0.39 -0.36	(^{+0.30} -0.29	+0.25 -0.21)
()	2	4	6	8	10	12
							$\mu_{VH}^{\tau\tau}$

Higgs 2023, Beijing

Higgs 2023, Beijing

CP Violation and Anomalous Coupling Searches

• $t\bar{t}H, H \rightarrow b\bar{b}$, <u>HIGG-2020-03</u> • $t\bar{t}H, H \rightarrow \gamma\gamma$, <u>HIGG-2019-01</u> • $H \rightarrow \tau\tau$, <u>HIGG-2019-10</u>

 π^{-}

• $t\bar{t}H/tH, H \rightarrow multilepton , HIG-21-006$ • $t\bar{t}H, H \rightarrow \gamma\gamma$, HIG-19-013 • $H \rightarrow \tau\tau$, HIG-20-006 HIG-20-007

Higgs 2023, Beijing

Summary

- Higgs boson couplings to third generation fermions are firmly established by both ATLAS and CMS.
- Now efforts focus on differential measurements, more niche signals, and refining techniques as we head toward HL-LHC.
- Full Yukawa agenda this week including two session on the frontiers of couplings.
 - Yukawa 1 Tuesday Morning
 - Yukawa 2 Tuesday Mid-day

https://www.nature.com/articles/s41586-022-04893-w Chris Palmer - November 27, 2023

Higgs 2023, Beijing

Thank you! Questions?

• Mass-fit

	$\mu_{\mathrm{VH}}^{ au au}$ obs	Significance exp obs		
WH	$1.27^{+0.80}_{-0.75}$	1.4	1.7	
ZH	$1.46^{+0.61}_{-0.53}$	2.2	3.1	
Combined	$1.40^{+0.49}_{-0.45}$	2.5	3.5	

• NN

Significance (σ)	exp	obs
WH	2.2	3.3
ZH	2.9	2.8
Combined	3.6	4.2

Higgs 2023, Beijing

Chris Palmer - November 27, 2023

NEW