

Non-resonant HH searches: status and prospects

Higgs 2023, Nov 27th - Dec 2nd 2023

Marco Valente (on behalf of the ATLAS and CMS collaborations)

Particle Physics department TRIUMF, Canada's particle accelerator centre <u>marco.valente@cern.ch</u>

Marco Valente ³hysics department FRIUMF, Canada's particle accelerz Centre

Non-resonant HH production

• Two kind of HH production modes sensitive to BSM physics:

Marco Valente ^Nhysics department FRIUMF, Canada's particle accelera Centre

• Two kind of HH production modes sensitive to BSM physics:

Resonant HH production

• BSM physics effects parametrized by heavy resonance mass m_{X^*}

Marco Valente hysics department RIUMF, Canada's particle acceler Centre

Non-resonant HH production

• Two kind of HH production modes sensitive to BSM physics:

Valente

ပ္ပ

Why is non-resonant HH interesting?

- κ_λ gives access to the shape of the Higgs potential via measurement of λ:
 - Many different potential shapes could have caused the same physics we see today!
 - **Differences** in the potential shape are **well motivated** by cosmology and BSM theories (more details in other talks).

Nambu-Goldstone Higgs

Coleman-Weinberg Higgs

Tadpole-Induced Higgs

Valente

00

Other non-resonant production modes

Vector Boson Fusion, VHH

So... how do we measure these non-resonant HH processes?

Marco Valente Physics department TRIUMF, Canada's particle accelerator Centre

HH decays and final states

- For $\sigma_{ggF+VBF}^{SM} = 32.78$ fb, ATLAS and CMS provided with approximately **9k HH** events ($\mathscr{L}_{int}^{ATLAS+CMS} = 280$ fb⁻¹).
- Maximal sensitivity to these 9k HH events requires multiple analyses targeting different HH final states!

$HH \rightarrow bb\tau\tau$

ATL-CONF-2023-071

- Good portion HH BR (7.3%) with relatively clean environment and low background.
- <u>Selection</u>: **2 b-jets** (77% DL1r) + **2** τ leptons $(\tau_{had}\tau_{had} and \tau_{lep}\tau_{had}).$
- 9 categories: 3 split by τ decay mode+trigger, each split in 3 by HH production+kinematic.

Category	Triggers		
$bar{b} au_{ ext{had}} au_{ ext{had}}$	Single-tau + di-tau triggers	×	$\times 3$ categories:
$bar{b} au_{ ext{lep}} au_{ ext{had}}$ SLT	Single lepton trigger (SLT)	+	1 VBF and 2 ggF (high and low m_{HH})
$bar{b} au_{ ext{lep}} au_{ ext{had}}$ LTT	Lepton+tau trigger (LTT)	*	

- Final observation: simultaneous binned fit of BDT scores in all categories.
- Latest CMS observed (expected) results [PLB 842 (2023) 137531]:

•
$$\mu_{SM}^{95\% CL} = 3.3 (5.2)$$

• $\kappa_{\lambda} \in [-1.7, 8.7] ([-2.9, 9.8])$

Marco Valente

11 .

Run: 329964 Event: 796155578 2017-07-17 23:58:15 CEST **Marco Valente**

$HH \rightarrow b\bar{b}\gamma\gamma$

arXiv:2310.12301

- Very small BR (0.26%), but very clean signature (excellent acceptance and reconstruction resolution).
- <u>Selection:</u>
 - 2 photons (tight and isolated) + 2 b-jets (77% DL1r).
 - MVA outputs to separate backgrounds and signals.
- 7 Categories: split in $m^*_{b\bar{b}\gamma\gamma}$ at 350 GeV, and BDT output score.

$$m_{b\bar{b}\gamma\gamma}^* = m_{b\bar{b}\gamma\gamma} - m_{b\bar{b}} - m_{\gamma\gamma} + 250 \text{ GeV}$$

- Final observation: simultaneous likelihood fit of $m_{\gamma\gamma}$ in all 7 categories.
- Latest ATLAS observed (expected) results:
 - $\mu_{SM}^{95\%CL} = 4.0 (5.0)$ -12% from previous Run 2 ATLAS result

• $\mu_{SM}^{95/0CL} = 4.0 (5.0)$ ATLAS result • $\kappa_{\lambda} \in [-1.4, 6.9] \ (\kappa_{\lambda} \in [-2.8, 7.8])$

• $\kappa_{2V} \in [-0.5, 2.7] ([-1.1, 3.3])$

$HH \rightarrow b\bar{b}b\bar{b}$

 \boldsymbol{b}

b

CMS Experiment at the LHC, CERN Data recorded: 2016-Aug-13 16:51:13.749568 GMT Run / Event / LS: 278803 / 465417690 / 259 Valente

00

$HH \rightarrow b\bar{b}b\bar{b}$ kinematic regimes

Resolved vs boosted

- Largest signal BR (33%), but large QCD multi-jet backgrounds.
- Higher statistics allow to target different kinematic regimes!

Explored by CMS

particle acceler

Marco Valente

Resolved $HH \rightarrow b\bar{b}b\bar{b}$

ATLAS (PRD 108 (2023) 052003) and CMS (PRL 129, 081802)

- A **similar approach** between ATLAS and CMS:
 - **4 b-jets** with QCD background estimated through **data-driven techniques** (more details in next talk by N. Hartmann and M. Roguljic).
- But with **some differences**:
 - 1. <u>B-jet pairing</u>: based on $\Delta R(b, b)$ at ATLAS and (m_{H1}, m_{H2}) mass-plane information at CMS.
 - 2. <u>Background estimation</u>: data-driven methods based on low-tag to high-tag corrections. ATLAS estimates with 2b events, while CMS with 3b (triggers).
 - 3. Final discriminant: m_{HH} (ATLAS) and DNN output (CMS)

13

cs department MF, Canada's particle

Marco Valente

CMS Boosted $HH \rightarrow b\bar{b}b\bar{b}$ (1)

ggF production and κ_{λ} sensitivity

- Impressive sensitivity achieved thanks to state-of-the-art GNN $H \rightarrow b\bar{b}$ taggers (ParticleNet).
 - 2 large-radius jets R=0.8 with $p_T > 300$ GeV and multiple categories based on signal kinematics and ParticleNet scores.
- <u>Challenges</u>: control of trigger turn-on effects, accurate calibration of $H \rightarrow b\bar{b}$ taggers and large-radius jet masses.

14

Phys. Rev. Lett. 131.041803

Marco Valente

CMS Boosted $HH \rightarrow b\bar{b}b\bar{b}$ (2)

Phys. Rev. Lett. 131.041803

VBF production and k_{2V}

- Boosted regime well suited to target variations of κ_{2V} in VBF production.
- Multiple categories split in kinematic selections and ParticleNet scores (LP,MP,HP)
- Observed (Expected) κ_{2V} ranges: [0.6,1.4] ([0.65,1.4])! Most sensitive measurement to k_{2V} !
 - $\kappa_{2V} = 0$ excluded with more than 6σ significance!

$HH \rightarrow b\bar{b}WW$

arXiv:2310.11286 (ATLAS)

CMS-PAS-HIG-21-005 (CMS)

CMS $HH \rightarrow b\bar{b}W^+W^-$

CMS-PAS-HIG-21-005

- $HH \rightarrow bbW^+W^-$ has the second largest HH BR (25%).
- Two channels to target leptonic W decays: single lepton and di-lepton.
 - 18 categories (resolved and boosted) to enhance sensitivity to both ggF and VBF HH productions.
- Final discriminants: DNN scores (1 for ggF, 1 for VBF)

17

Marco Valente ²hysics department FRIUMF, Canada's particle acce Centre

Valente

00

ATLAS $HH \rightarrow b\bar{b}l^+l^-\nu\nu$

arXiv:2310.11286

- Targeted signals: $HH \rightarrow b\bar{b} + WW/ZZ/\tau\tau \rightarrow b\bar{b} + l^+l^- + neutrinos$
- Selection:
 - 2 b-jets (77% DL1r) + 2 leptons
 (e/μ)
 - **DNNs** to separate HH signals from backgrounds
- **2 categories:** 1 for ggF and 1 for VBF $\frac{3}{8}$
- <u>Final observation:</u> **simultaneous likelihood fit of DNN score** in 2 categories.
- Observed (expected) results:
 - $\mu_{SM}^{95\% CL} = 9.7 (16.2)$
 - $\kappa_{2V} \in [-0.17, 2.4] ([-0.51, 2.7]).$

Combinations

²hysics department RIUMF, Canada's particle acceleratoi

Marco Valente

Combined results (1)

SM signal strength upper limits

- Maximal sensitivity obtained through **statistical combinations**:
 - Very comparable sensitivities between 2 experiments (ATLAS dominated by $b\bar{b}\tau\tau$, CMS by $b\bar{b}b\bar{b}$).
 - A lot of improvement thanks to improved reconstruction/ID techniques (e.g. DL1r, ParticleNet) and analysis techniques (more categories, extensive use of Machine Learning).

Combined results (2)

Self-coupling constraints (κ_{λ})

- Constraint of κ_{λ} also largely improved with respect to partial Run 2 results!
 - Very similar expected 95% CL constraints between the 2 experiments.
 - Indirect single-Higgs measurements now also included in the constraint.
 - Rapidly approaching the exclusion of $\kappa_{\lambda} = 0!$

Aarco Valente hysics department RIUMF, Canada's particle entre

The future

The immediate future: Run 3

- <u>Run 3 will provide us:</u> more **luminosity** (~ 400 fb⁻¹ for Run 2+3 per experiment), more energy (+10% HH at $\sqrt{s} = 13.6$ TeV) and better detector performance.
 - Some examples: better triggers and improved flavour tagging (e.g. GN2 in ATLAS)
 - With all these improvements, Run 3 should bring us **very close to SM HH** ($\mu_{SM}^{95\% CL} \sim 1.0$)!
 - If something is very BSM-like in the Higgs potential, we might start to see it in Run

Marco Valente Physics department TRIUMF, Canada's particl Centre

Marco Valente hysics department RIUMF, Canada's particle acc

The distant future: HL-LHC

- ATLAS expects a statistical evidence (3.4 σ) for SM HH ($\kappa_{\lambda} = 1$) with 3000 fb⁻¹ assuming same Run 2 detector performance and reduction of systematics.
 - 5σ should be well within reach of a combined ATLAS and CMS HL-LHC result!
 - ATLAS expects to constraint κ_{λ} to [0.5,1.6] at 68% CL with 3000 fb⁻¹. Combination with CMS could bring us close to [0.65,1.3]?

Marco Valente ^Physics department FRIUMF, Canada's particle accelera Centre

Summary and outlook

- Summarised recent status non-resonant HH searches.
- No significant excess above the SM (for now), and exclusion limits have been set to:
 - Obs (exp) $\mu_{HH}^{95\% CL}$: 2.4 (2.9) at ATLAS and 3.4 (2.5) at CMS
 - Obs(exp) κ_λ ranges: [-0.4,6.3] ([-1.9,7.6]) at ATLAS and [-1.2,7.5]([-2.0,7.7]) at CMS
 - <u>Obs(exp)</u> κ_{2V} ranges: [0.1,2.0] ([0.0,2.1]) at ATLAS and [0.62,1.4] ([0.66,1.37]) at CMS (boosted $HH \rightarrow b\bar{b}b\bar{b}$)
- Large improvements not only due to increased luminosity in Run 2, but also constantly improved analysis and reconstruction techniques (e.g. DL1d, ParticleNet, etc.).
- The future will be exciting:
 - Important BSM deviations from the SM Higgs potential could start to be detected with Run 2+3 datasets!
 - At HL-LHC, 5σ discovery well accessible combining ATLAS and CMS, and combined κ_{λ} precision could be in the ~30-35% range (50% expected for ATLAS-only).

Non-resonant HH searches: status

Higgs2023 [Nov 27- Dec 2] and perspectives

Marco Valente Physics department TRIUMF, Canada's particle accelera Centre

My personal HL-LHC estimation

Physics department TRIUMF, Canada's particle accelerator Centre

Marco Valente

ATLAS legacy $HH \rightarrow b\bar{b}\tau\tau$ (1)

Detailed event selection

particle accelerator

Physics department TRIUMF, Canada's pa Centre

Marco Valente

ATLAS legacy $HH \rightarrow b\bar{b}\tau\tau$ (2)

Data/background distributions

ATLAS legacy $HH \rightarrow b\bar{b}\tau\tau$ (3)

Data/background distributions

<u>Marco Valente</u>

particle accelerato

Physics department TRIUMF, Canada's p

Centre

Marco Valente

ATLAS legacy $HH \rightarrow b\bar{b}\tau\tau$ (4)

VBF BDT

ATLAS legacy $HH \rightarrow b\bar{b}\tau\tau$ (5)

 κ_{λ} and κ_{2V} likelihood scans

Physics department TRIUMF, Canada's particle accelerator Centre

Marco Valente

ATLAS legacy $HH \rightarrow b\bar{b}\tau\tau$ (6)

EFTs

ATLAS vs CMS $HH \rightarrow b\bar{b}\tau\tau$

Data/background distributions in most sensitive ggF categories

Marco Valente

35

Physics department TRIUMF, Canada's particle accelerator Centre

Marco Valente

ATLAS H+HH combination (1)

Phys. Lett. B 843 (2023) 137745

Final state	Obs. 95% CL	Exp. 95% CL	Obs. value $^{+1\sigma}_{-1\sigma}$
$HH \rightarrow b \bar{b} \gamma \gamma$	$-0.8 < \kappa_{2V} < 3.0$	$-1.6 < \kappa_{2V} < 3.7$	$\kappa_{2V} = 1.1^{+1.0}_{-1.0}$
$HH \to b \bar{b} \tau^+ \tau^-$	$-0.6 < \kappa_{2V} < 2.7$	$-0.5 < \kappa_{2V} < 2.7$	$\kappa_{2V} = 1.5^{+0.7}_{-1.7}$
$HH \rightarrow b\bar{b}b\bar{b}$	$0.0 < \kappa_{2V} < 2.1$	$0.0 < \kappa_{2V} < 2.1$	$\kappa_{2V} = 1.0^{+0.7}_{-0.6}$
HH combination	$0.1 < \kappa_{2V} < 2.0$	$0.0 < \kappa_{2V} < 2.1$	$\kappa_{2V} = 1.1^{+0.6}_{-0.6}$

ATLAS H+HH combination (2)

Phys. Lett. B 843 (2023) 137745

Marco Valente

Marco Valente Physics department TRIUMF, Canada's particle accelerator Centre

H+HH combination (ATLAS vs CMS)

Marco Valente Physics department TRIUMF, Canada's particle accelerator Centre

H+HH combination (ATLAS vs CMS)

Physics department TRIUMF, Canada's particle accelerator Centre

Marco Valente

ATLAS resolved $HH \rightarrow b\bar{b}b\bar{b}$

Additional material

particle

lysics department IUMF, Canada's pa

Marco Valente

ATLAS resolved $HH \rightarrow b\bar{b}b\bar{b}$

Likelihood vs cross-section

With Poisson pdf, no signal hypothesis should give more stringent limit (i.e. cross-section scan more stringent than likelihood scan)

ATLAS $HH \rightarrow b\bar{b}l^+l^-\nu\nu$ (1)

arXiv:2310.11286

Figure 3: Definition of signal and control regions for same lepton flavour (a) and different lepton flavour (b) events. The greyed-out region is excluded as it makes a negligible contribution to the final results. The $m_{b\ell}$ discriminant variable [54] is used to further separate the top CR into separate $t\bar{t}$ and Wt control regions.

Table 2: Cutflow for event selection using SM $gg/qq \rightarrow HH$ signal samples in various decay channels. For both ggF and VBF signal samples, the SM *HH* cross-section, σ , and branching ratio, \mathcal{B} , are assumed when computing event yields for a luminosity of $\mathcal{L} = 140 \text{ fb}^{-1}$. Efficiencies are different for $bbZZ(\rightarrow 2\ell 2\nu)$ compared to $bbZZ(\rightarrow 2\ell 2q)$ since the initial number of events considers $Z \rightarrow \tau\tau$ while the former does not.

asE and VDE quant solution out	bbWW b		bττ	$bbZZ(\rightarrow 2\ell 2\nu)$		$bbZZ(\rightarrow 2\ell 2q)$		
ggr and v Br event selection cut	ggF	VBF	ggF	VBF	ggF	VBF	ggF	VBF
Initial number of events $(\mathcal{L} \times \sigma \times \mathcal{B})$	70	3.9	39	2.2	3.8	0.21	18	1.0
$N_{\text{leptons}} = 2$, opposite sign, pass trigger requirement	22	0.99	8.3	0.35	1.3	0.057	3.6	0.17
$N_{b-\text{jets}} = 2$	9.8	0.39	3.7	0.14	0.57	0.022	1.6	0.067

42

Marco Valente Physics department TRIUMF, Canada's particle accelerator Centre

2∆ log(L)

Non-resonant HH searches: status

and perspectives Higgs2023 [Nov 27- Dec 2]

$\operatorname{ATLAS} HH \to b\bar{b}l^+l^-\nu\nu (2)$

κλ

κ_{2V}

ATLAS $HH \rightarrow b\bar{b}l^+l^-\nu\nu$ (3)

DNN variables

Table 4: Input features used for the DNN in the ggF category. Indices 0 and 1 refer to p_{T} -leading and p_{T} -sub-leading objects respectively.

Input feature	Description
same flavour	unity if final state leptons are <i>ee</i> or $\mu\mu$, zero otherwise
$p_{\mathrm{T}}^{\ell}, p_{\mathrm{T}}^{b}$	transverse momenta of the leptons, <i>b</i> -tagged jets
$m_{\ell\ell}, p_{\rm T}^{\ell\ell}$	invariant mass and the transverse momentum of the di-lepton system
$m_{bb}, p_{\rm T}^{bb}$	invariant mass and the transverse momentum of the <i>b</i> -tagged jet pair system
m_{T2}^{bb}	stransverse mass of the two <i>b</i> -tagged jets [125, 126]
$\Delta \tilde{R}_{\ell\ell}, \Delta R_{bb}$	ΔR between the two leptons and two <i>b</i> -tagged jets
$m_{b\ell}$	$\min\{\max(m_{b_0\ell_0}, m_{b_1\ell_1}), \max(m_{b_0\ell_1}, m_{b_1\ell_0})\} [54]$
$\min \Delta R_{b\ell}$	minimum ΔR of all <i>b</i> -tagged jet and lepton combinations
$m_{bb\ell\ell}$	invariant mass of the $bb\ell\ell$ system
$E_{\rm T}^{\rm miss}, E_{\rm T}^{\rm miss}$ -sig	missing transverse energy and its significance [127]
$m_{\rm T}(\ell_0, E_{\rm T}^{\rm miss})$	transverse mass of the $p_{\rm T}$ -leading lepton with respect to $E_{\rm T}^{\rm miss}$
$\min m_{\mathrm{T},\ell}$	minimum value of $m_{\rm T}(\ell_0, E_{\rm T}^{\rm miss})$ and $m_{\rm T}(\ell_1, E_{\rm T}^{\rm miss})$
$H_{\mathrm{T2}}^{\mathrm{R}}$	measure for boostedness ⁶ of the two Higgs bosons

da's particle accelerato

Marco Valente Physics department TRIUMF, Canada's particle

$CMS HH \rightarrow bbW^+W^-(1)$ CMS-PAS-HIG-21-005

Categories	Sub-Categories		
HH(GGF)	Resolved 1b	Resolved 2b	Boosted
HH(VBF)	Resolved 1b	Resolved 2b	Boosted
Top + Higgs	Resolved		Boosted
WJets + Other	Inclusive		

Table 1: The summary of the categories of events according to the DNN based multiclassification and $H \rightarrow b\overline{b}$ topology for the single lepton channel.

Categories	Sub-Categories			
HH(GGF)	Resolved 1b	Resolved 2b	Boosted	
HH(VBF)	Resolved 1b	Resolved 2b	Boosted	
Top + Other	Resolved		Boosted	
DY + Multi-boson	Inclusive			

Table 2: The summary of the categories of events according to the DNN based multiclassification and $H \rightarrow b\overline{b}$ topology for the dilepton channel.

Marco Valente Physics department TRIUMF, Canada's particle accelerator Centre

10 –

-20

-15

-10

-5

0

5

10

15

20

25

κλ

CMS $HH \rightarrow b\bar{b}W^+W^-(2)$

CMS-PAS-HIG-21-005

-2

-1

-3

0

2

1

3

4

6

κ_{2V}

5