

bbbackground estimation Challenges and techniques in HH / HY → 4b analyses

Nicole Hartman (nicole.hartman@tum.de) Technical University of Munich on behalf of the ATLAS collaboration

Matej Roguljić (matej.roguljic@cern.ch) Johns Hopkins University on behalf of the CMS Collaboration

Higgs 2023 28.11.2023

The 4b analysis landscape

66

Non-Resonant

Resolved

b°)

✓ HH: <u>Phys. Rev. D 105 (2022) 092002</u>
 ✓ HH: <u>JHEP08(2018)152</u> (36 fb⁻¹)

✓ ggF/VBF: <u>Phys. Rev. D 108 (2023) 052003</u>
 ✓ ggF/VBF: <u>PhysRevLett.129.081802</u>

- ✔ HH: Phys. Rev. D 105 (2022) 092002
- ✔ HH: <u>CMS-PAS-B2G-20-004</u>

elle

✓ HY: <u>PhysLetB.2022.137392</u>

✓ ggF/VBF: <u>PhysRevLett.131.041803</u>

Transfer function method

Background uncertainties

Different NN trained for each of the three years

Impact of systematics: ATLAS HH NR

All other experimental systematic uncertainties < %-level impact

Background model drives the sensitivity for 4b analyses!

* CMS 4b resolved: 3.9 (7.8) for obs (exp) upper limit HH signal strength

Less multijet background at high energy Higgs 2 Higgs 1 tt becomes more prominent 2

CMS Experiment at the LHC, CERN Data recorded: 2016-Aug-13 16:51:13.749568 GMT Run / Event / LS: 278803 / 465417690 / 259

Boosted analyses

In-situ Transfer Function measurement

Background uncertainties

Data stat. uncertainties in low-tag regions (13 TeV) Y-candidate ParticleNet score **CMS** Simulation Mx=1600 GeV Multijet My=90 GeV VS3 VS1 SR1 VS2 SR2 'S4 0.8 VB SB2 SB 0.6 0.0 **•** 0.0 0.6 0.8 0.94 0.98 1.0 H-candidate ParticleNet score

Uncertainty on initial R_{P/F}

Uncertainty on R_{Ratio} parameters

Figures from CMS resonant HY4b search (<u>PhysLetB.2022.137392</u>)

16

Impact of background uncertainties

→ Choice of CR
→ CR stat. uncertainty
→ Transfer factor unc.

Statistical uncertainty dominates

Confirm the method by fitting in the validation regions

Generate toy datasets and run bias and signal injection tests

- 3. Apply TF to source region for a background estimate in the signal region
- 4. Determine the estimation uncertainty?

TF uncertainty Source shape uncertainty non-closure CR selection

5. Validate the method in a signal-depleted region in data

What about tt background?

High p_{T} regime suppresses QCD so tt becomes significant in the signal regions

Similar shape as QCD → Jointly fit using TF method

Different shape from QCD
 → Model separately using simulation

Correcting tt simulation

b-tagged jet and a lepton allow us to select a clean set of hadronically decaying top jets

Apply correction factors to simulation in the SR

CMS resonant HY4b search (PhysLetB.2022.137392)

In summary

Data-driven methods crucial for HH4b analyses

Transfer functions (low \rightarrow high tag) mostly used

tt relevant in boosted

Exciting for Run 3 and bbb beyond

.00000000

23

ATLAS : Comparison of the NR channels

Comparison between the signal and backgrounds for ATLAS's three most sensitive HH channels:

- bbγγ (<u>HDBS-2018-34</u>)
- bbττ (<u>HDBS-2018-40</u>)
- 4b (<u>HDBS-2019-29</u>)

For this heuristic comparison, a loose cut on the $bb\tau\tau$ MVA discriminants was used to mimic the $bb\gamma\gamma$ BDT categories.

ATLAS / CMS comparison

It works

Post fit plot for ATLAS HH4b non-res in analysis categories

Input variables used for the resolved analyses **EXPERIMENT** reweighting

ATLAS: NN 2b → 4b

Variable description	\mathbf{ggF}	VBF	Variable description
$\log(\Delta R_1)$: between the closest two HC jets	\checkmark		$p_{T,1}, p_{T,2}, p_{T,3}, p_{T,4}$: p_T
$\log(\Delta R_2)$ between the other two HC jets	\checkmark		$m_H H$ 4-jet invariant m
$\log(p_T)$ of the 4th leading HC jet	\checkmark		m_{H1}, m_{H2} : invariant m
$\log(p_T)$ of the 2nd leading HC jet	\checkmark		$p_{T,H1}, p_{T,H2}$: transvers
$\langle \eta \rangle$: average absolute value of the HC jets η	\checkmark	\checkmark	$ \Delta\eta(H1,H2) $
Number of jets in the event	\checkmark		Scalar sum p_T of <i>b</i> -jets
$\log(p_{T,HH})$	\checkmark		Vector sum p_T of <i>b</i> -jets $\Delta R^{H1}(bb), \ \Delta R^{H2}(bb)$:
ΔR_{HH}	\checkmark		ΔR_{min} out of the three
$\Delta \phi$ between the jets in the leading HC	\checkmark		$ \Delta\eta_{max} $ out of the three
$\Delta \phi$ between the jets in the subleading HC	\checkmark		$ \cos\theta^* $: Abs value of the
$\log(X_{Wt})$	\checkmark	\checkmark	the beam line in the ce
Trigger bucket index	\checkmark	\checkmark	$ \cos \theta_b^{H1} $: Angle of one
Year index		\checkmark	Higgs reference frame
Second smallest ΔR between the jets in the leading HC (out of		\checkmark	$\sum_{k=1}^{n} R_e$: Sum of the resol
the three possible pairings)			v_{T} . Number of the ob-
Maximum di-jet mass out of the possible pairings of HC jets		\checkmark	$M_{\bar{B}}$: Number of the all WP
Minimum di-jet mass out of the possible pairings of HC jets		\checkmark	$ \Delta \phi(H_1, H_2) $
Energy of the leading HC		\checkmark	$m_j j$ between the VBF
Energy of the subleading HC		\checkmark	$ \Delta \eta_{jj} $ between the VB
	1	1	

Same variables for non-res ggF and resonant resolved analyses.

CMS: BDT 3b → 4b

Variable description	\mathbf{ggF}	VBF
$p_{T,1}, p_{T,2}, p_{T,3}, p_{T,4}$: p_T of the four chosen b-jets	\checkmark	\checkmark
$m_H H$ 4-jet invariant mass	\checkmark	\checkmark
m_{H1}, m_{H2} : invariant mass of the Higgs Candidates	\checkmark	\checkmark
$p_{T,H1}, p_{T,H2}$: transverse momentum of the Higgs Candidates	\checkmark	\checkmark
$ \Delta\eta(H1,H2) $	\checkmark	\checkmark
Scalar sum p_T of <i>b</i> -jets	\checkmark	
Vector sum p_T of <i>b</i> -jets	\checkmark	
$\Delta R^{H1}(bb), \Delta R^{H2}(bb)$: opening angle between jets in HCs	\checkmark	
ΔR_{min} out of the three possible pairings between b-jets	\checkmark	
$ \Delta\eta_{max} $ out of the three possible pairings between b-jets	\checkmark	
$ \cos\theta^* \colon$ Abs value of the angle of one of the HCs with respect to	\checkmark	
the beam line in the center-of-mass frame of the four jets		
$ \cos \theta_b^{H1} $: Angle of one of the <i>b</i> -jets in the leading Higgs in the	~	
Higgs reference frame		
$\sum R_e$: Sum of the resolution estimators of the three tightest WP	~	
b-tagged jets (based on DeepJet score)		
N_B^T : Number of the above three jets passing the tight DeepJet	~	
WP		
$ \Delta \phi(H_1,H_2) $		\checkmark
$m_j j$ between the VBF jets		\checkmark
$ \Delta \eta_{jj} $ between the VBF jets		\checkmark
MVA score of ggF vs VBF BDT		✓
	1	

Likelihood ratio trick

- Suppose that we train a classifier, $D(x) \in (0,1)$, to classify between 2 classes,
 - 0: 2b class
 - 1: 4b class

Train with binary cross entropy (maximize the probability of the correct class, or minimize negative log likelihood = loss)

If D(x) is p_{4b} , then 1-D(x) is p_{2b} , because there are only 2 classes and the prob need to sum to 1

The minimum of this loss is: $D^*(x) = \frac{1}{1 + p_{2b}(x) / p_{4b}(x)}$

Sanity check:

• If
$$p_{4b}$$
 is high and p_{2b} is ~ 0, D*(x) = 1

• As p_{2b} is high and $p_{4b} \rightarrow 0 D^*(x) = 0$ as expected

Rearrange for the weight: $w(x) = p_{4b}(x) / p_{2b}(x) = \frac{1}{D^*(x)} - 1$ This classifier $D^*(x)$ gives us the likelihood ratio $p_{4b}(x) / p_{2b}(x) := \frac{1}{D^*(x)} - 1$

Background reweighting

Loss function ATLAS 4b resolved actually uses... iteration on a classical-theme.

• Multi-dimensional reweighting $2b \rightarrow 4b$.

$$p_{4b} = w(x) \cdot p_{2b}(x)$$
Want to learn this

• Let Q(x) be a NN mapping from $2b \rightarrow 4b$.

$$\mathscr{L}[Q(x)] = \mathbb{E}_{x \sim p_{2b}}\left[\exp\left(\frac{Q(x)}{2}\right)\right] + \mathbb{E}_{x \sim p_{4b}}\left[\exp\left(-\frac{Q(x)}{2}\right)\right]$$

Minimize loss in Control Region

$$Q^*(x) = \arg\min_{Q} \mathscr{L}[Q(x)] = \log \frac{p_{4b}(x)}{p_{2b}(x)} \implies w(x) = e^{Q^*(x)}$$

180 HIS GeV **CR1:** Derive nominal estimate Assess systematic on estimate SR: Apply background estimate CR1 140 CR2 SR CR2 120 100 CR1 80 80 100 120 140 160 180 m_{H1} [GeV]

classifier

Apply w(x) to 2b Signal Region to get 4b prediction

Choice of Control Region

Systematics

Background validation

- Q: Does this proposal work?
- \rightarrow Invert every cut!!

Background Validation

Phys. Rev. D 108 (2023) 052003

Background Validation: rev $\Delta \eta_{HH}$

Phys. Rev. D 108 (2023) 052003

4b boosted ATLAS (resonant)

4b resonant

Still a multidimensional reweighting (Low tag -> high tag)

Dedicated categories for number of b-tagged track jets: 4b, 3b and 2b-split.

QCD fit in CR with

- Shape: iterative spline reweighting
- Norm: combined fit with tt to m_{H1} shape

CMS

Details of the background estimate

Still a multidimensional reweighting (Low tagged jet -> high tagged jet)

In this region, the stat unc is so high, that the 2b-2f shape is taken directly as is (no transfer function).

Iterative spline reweighting (transfer function)

Iterative spline reweighting

For each "iteration", sequentially correct a set of reweighting variables

Spline fit to ratio of tagged /
untagged 1d histograms

$$W_i = W_{i-1} \times \left[\lambda_i \prod_j (f_{ij}(x_j) - 1) + 1 \right]$$

"j" are the kinematic reweighting variables:

- p_{T} of the "tagged" large-R jet
- p_T and η of the b-tagged VR track jet
- ΔR(lead trk jet, subl trk jet) [when applicable]

After 10 iterations, the fit has converged.

This shape reweighting happens **directly on data** inclusively for QCD and tt.

Normalizations

Phys. Rev. D 105 (2022) 092002

Combined fit for the QCD and tt normalizations with the m_{H1} shape.

- QCD yield from the low-tagged region
- tt taken from MC

$$N_{i,\text{data}}^{\text{tag}} = \mu_{QCD} \left(N_{i,\text{data}}^{\text{untag}} - N_{i,t\bar{t}}^{\text{untag}} \right) + \alpha_{t\bar{t}} - N_{i,t\bar{t}}^{\text{tag}}$$

Fit separately for each of the three SRs (4b, 3b and 2b split), 6 norm factors

ATLAS resonant combination

More Backup slides

Definition of boosted control regions (1)

HH resonant

Definition of boosted control regions (2)

AK8 m_{reg} region	$50 < m_{\rm reg}^{\rm lead} < 110{\rm GeV}$	$110 < m_{\rm reg}^{\rm lead} < 150{\rm GeV}$	$150 < m_{\rm reg}^{\rm lead} < 200{\rm GeV}$		
$50 < m_{\rm reg}^{\rm subl} < 90 {\rm GeV}$	Transfer factor regions (A & B)				
$90 < m_{\rm reg}^{\rm subl} < 145{\rm GeV}$	Validation region (D)	search region (D)	Validation region (D)		
$145 < m_{\rm reg}^{\rm subl} < 200{\rm GeV}$	Transfer factor regions (A & B)				

CMS HH(4b) NR resolved

Figure 1: Distributions of the events observed in the A_{SR}^{4b} signal region for 2016 (top) and 2017–2018 (bottom) data. The two leftmost columns show the BDT output in the low- and high-mass categories, and the rightmost column shows the m_{HH} distribution in the VBF SM-like category.

CMS HH(4b) NR boosted: VBF

Figure 1: The data and fitted signal and background distributions for the $D_{b\overline{b}}$ -subleading jet regressed mass are shown for the ggF BDT event category 1, the category accounting for most of the sensitivity to the ggF HH signal. The SM HH ($\kappa_{2V} = \kappa_V = \kappa_{\lambda} = 1$) signal is shown scaled to the best fit signal strength $\mu = 3.5$. The lower panel shows the ratio of the data and the total prediction, with its uncertainty represented by the shaded band. The error bars on the data points represent the statistical uncertainties.

Parametric function bkg. modelling

- Directly model the shape with a function
- Can be used when searching for a resonance on a smoothly falling background
 - Turn-on effects may be problematic

- Resonant HH→4b search, 2016 data (JHEP08(2018)152)
 - Functional forms chosen in studies performed before unblinding, using **control regions**
 - Signal-free regions with kinematic properties similar to events in signal regions

