

Dark Higgs searches in dedicated LLP detectors. MATHUSLA, CODEX-b, ANUBIS, FASER, and SHiP

Emma Torró Pastor Big thanks to CODEX-b, ANUBIS, FASER and SHiP for input

> **Higgs 2023** Beijing Dec 1st 2023

Why search for Long-lived particles?

The search for new Physics is one of the main goals in HEP

- What is Dark Matter made of?
- Neutrinos have a mass $\neq 0$
- Matter and antimatter are not symmetric
- . . .
- Precision measurements
- Explicit searches:
 - 90% searching for promptly decaying new particles
 - But!! Most robust problems (DM, neutrino masses) naturally point to very weakly interacting particles
 - New particles could have long lifetimes!!
- We need to make sure that every possibility has been explored
 - Diversity in searches
 - New ideas

E. Torró Higgs 2023 Beijing, Dec 2023

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits

Status: July 2022

 $\int \mathcal{L} dt = (3.6 - 139) \, \text{fb}^{-1}$

*Only a selection of the available mass limits on new states or phenomena is shown †Small-radius (large-radius) jets are denoted by the letter j (J).

> To date, **O(100) ATLAS, CMS, LHCb papers** on BSM searches with full Run 2 dataset!

Still, no evidence of new physics...

S	Ρ	re	lir	ni	n	ary
\overline{s}	= 8	8,	1;	3 '	Te	۶V
Re	efe	ere	en	C	е	
	21 17 19 15 21 18 20 18 18	02.1 07.0 10.0 12.0 02.1 08.0 04.1 04.1 03.0	08) 941 984 925 934 923 946 98 996	74 47 47 86 05 80 36 23 78		
TLA TLA TLA	19 17 18 20 19 S-C 20 S-C 20 S-C 22 22 19	03.0 09.0 05.0 05.0 06.0 00.0 00 07.0 07.0 07.0 04.1)62)72)92)51)56 F-2 I 46 F-2)02)02)02	48 42 99 38 09 202 202 36 202 30 30 30 79	21-(21-(22-(025 043 005
	17 20 21 21 18	03.0 06.1 05.1 05.1 11.0)91 29 38 38 38	27 46 47 47 05		
TLA	21 21 21 S-C	02.1 02.1 08.1 ;ON	08 08 33 F-2	74 74 91 202	21-(036
	20 20 21 20 21 21 21 21	06.0 06.0 08.0 04.1 01.1 01.1)58)58)76 40 15 25)76	72 65 60 82 27 65		
TLA TLA	S-C 18 18 S-C 18 S-C	ON 08.0 07.1 ON 12.0	F-2)23 18 F-2)73 F-2	202 43 83 202 43 202	21-0 21-0)24)40)18
	19 17 19 14 14	10.0 09.1 010. 111.	084 04 04 29 29	47 40 47 21 21	:2-(
TLA.	22 18 21 .S-C 14 .S-C 19	02.0 09.1 01.1 ON 111. ON 05.1)20 11 19 F-2 292 01	39 05 61 202 21 202 30	2-()10)34

Why search for Long-lived particles?

- Semi-stable particles are very abundant in the SM
- It would not be surprising that new physics contains them to
- Very easily identified as background
 - Specific searches needed!

Motivation	Top-down Theory	IR LLP Scenario
DO Naturalness	RPV SUSY GMSB mini-split SUSY Stealth SUSY Axinos Sgoldstinos VV theory Neutral Naturalness Composite Higgs Relaxion	BSM=/→LLP (direct production of BSM state at LHC that is or decays to LLP) Hidden Valley confining sectors
Dark Matter	Asymmetric DM Freeze-In DM Freeze-In DM SIMP/ELDER Co-Decay Co-Annihilation Dynamical DM I	ALP EFT SM+S SM+V (+S) exotic Z
Baryogenesis	WIMP Baryogenesis Exotic Baryon Oscillations Leptogenesis	decays exotic Hi
Neutrino Masses	Minimal RH Neutrino with U(1) _{B-L} Z' with SU(2) _R W _R long-lived scalars with Higgs portal from ERS depends on production mode Discrete Symmetries	HNL exotic Ha decays decays

New physics could have long lifetimes Signatures in ATLAS and CMS not visible in standard searches!!

Dark Higgs and exotics Higgs decays with LLPs

- Dark/Hidden sectors: new sector very weakly coupled to the SM
- In its minimal version, need only one state that acts as mediator between the two sectors
- Lots of examples during this conference (ex. <u>Wei Liu's talk</u>, <u>Hengne Li's talk</u>)

Dark Higgs and exotics Higgs decays with LLPs

- Dark/Hidden sectors: new sector very weakly coupled to the SM
- In its minimal version, need only one state that acts as mediator between the two sectors
- Lots of examples during this conference (ex. <u>Wei Liu's talk</u>, <u>Hengne Li's talk</u>)
 - Can include new neutral particles with extremely weak interactions
 - New long-lived particles lead to new phenomenology!!
 - They can be produced in the decay of both heavy and light SM particles or in other ways

e

If they are weakly interacting and long lived, they pass through matter leaving no signature and decay to visible particles after a long $L = v\tau\gamma \sim (100$

$$(m) \left[\frac{10^{-5}}{\epsilon}\right]^2 \left[\frac{100 \text{ MeV}}{m}\right]^2 \left[\frac{E}{\text{TeV}}\right]$$

Where should we look for LLPs in collider experiments?

E. Torró Higgs 2023 Beijing, Dec 2023

That depends on the lifetime: where is it more probable to find a LLP decay?

- In the main LHC detectors we can use lacksquareinformation from different sub detectors for different targets.
 - Large SM backgrounds
 - Tight triggers

For long lifetimes we need different detectors!

Current limits at the LHC experiments

- The main LHC experiments count with a large program for the search of LLPs
- Example benchmark: **Hidden sector** with a heavy neutral boson, ϕ , decaying to two new long-lived neutral scalars, s, that decay to pairs of SM fermions.
 - New boson can be
 - Higgs-like (125 GeV); m(s) = 5 55 GeV
 - or heavier (200, 1000 GeV); m(s) = 8 400 GeV

long-lived

p

Current limits at the LHC experiments

- The main LHC experiments count with a large program for the search of LLPs Example benchmark: **Hidden sector** with a heavy neutral boson, ϕ , decaying to two new long-lived neutral scalars, s, that decay to pairs of SM fermions.
 - New boson can be
 - Higgs-like (125 GeV); m(s) = 5 55 GeV
 - or heavier (200, 1000 GeV); m(s) = 8 400 GeV

E. Torró Higgs 2023 Beijing, Dec 2023

Overview of proposed LLP detectors at the LHC

- Huge range of lifetimes from $\sim 50m$ to $10^8 m$ (BBN) limit): covered by different detector volume and distance form IP
- Range of models, couplings and masses covered by different angles wrt beam axis
- Many possible decay modes!
- Need variety of detectors = complementary

E. Torró Beijing, Dec 2023 Higgs 2023

http://www.antimatter-matters.org/

Overview of proposed LLP detectors at the LHC

- Huge range of lifetimes from ~50m to 10⁸ m (BBN limit): covered by different detector volume and distance form IP
- Range of models, couplings and masses covered by different angles wrt beam axis
- Many possible decay modes!
- Need variety of detectors = complementary
- Final goal: avoid missing a discovery due to the lack of correct tools!

Overview of proposed LLP detectors at the LHC

- Huge range of lifetimes from $\sim 50m$ to $10^8 m$ (BBN) limit): covered by different detector volume and distance form IP
- Range of models, couplings and masses covered lacksquareby different angles wrt beam axis
- Many possible decay modes!
- Need variety of detectors = complementary
- Final goal: avoid missing a discovery due to the lack of correct tools!

Higgs 2023 Beijing, Dec 2023 E. Torró

MATHUSLA

MAsive Timing Hodoscope for Ultra Stable neutral pArticles

- Objective: ultra long-lived particles
 - Most decays happen far from the IP: placed on the surface above CMS during HL-LHC
 - Aim at ~zero background analysis (~100m rock shielding) for sensitive to LLPs with lifetime up to 10⁸ m (BBN limit)
- Large air decay volume with several scintillator layers for tracking
- Integrated with CMS trigger. Access to full event in case of discovery

https://mathusla-experiment.web.cern.ch

Updated LHCC Letter of Intent: arXiv 2009.01693

MATHUSLA detector layout

- Decay volume $\sim 100 \times 100 \times 25 \text{ m}^3$
- Modular design (100 modules of $9 \times 9 \times 30 \text{ m}^3$)
 - Assembly time line not governed rigidly by HL-LHC beam schedule \bullet
- Data taking can start after installation of the first module

E. Torró Beijing, Dec 2023 Higgs 2023

- Current status:
 - Detector technology has been studied extensively
 - Small lab-scale prototype units are under construction
 - Conceptual design report (CDR) in preparation
- Goal is to be ready for the start of HL-LHC ${\bullet}$ running

MATHUSLA Test Stand

- Prototype built on the surface above ATLAS
- Data taking during 2018 both with and without beam running
- During collisions, two types of processes creating upward going tracks:
 - inelastic backscattering cosmic rays: constant rate with LHC luminosity
 - Charged particles from LHC collisions: rate increases linearly with luminosity

E. Torró Beijing, Dec 2023 Higgs 2023

NIMA 985 (2021) 164661 MATHUSLA Test Stand

cosmics Test stand Rock Access Access shaft shaft **ATLAS** Beamline IP

Codex-b

Compact Detector for Exotics at LHC-b

- To be placed near the LHCb cavern
- Target: weakly interacting LLPs at HL-LHC
- Use LHCb trigger CPUs space in LHCb cavern / **DELPHI** location

- 10x10x10 m³ box
- 6 layers of RPCs for tracking to reconstruct LLP decay vertex
 - same RPC as the ATLAS muon system upgrade. No dedicated R&D
 - Addition of calorimetry or other material layers for photon ID being considered
- Active and passive shield veto agains collision backgrounds
- Integrated with LHCb triggerless DAQ: assuming a production mechanism, able to measure LLP velocity, boost and mass

Codex-β

- Demonstrator, 2x2x2 m³ tracking volume in approx. future location for CODEX-b
- Same RPCs planned for CODEX-b
 - RPC triplets being built NOW. The first RPCs have been built and tested
- Mechanical support structure is well developed
- Target installation during 2024, data-taking in 2025
- Main objectives:
 - Confirm control of backgrounds:
 - Target zero-background CODEX-b
 - Calibrate detector simulation
 - Integrated with LHCb: pave the way for integration with LHCb DAQ/trigger
- Full detector for Run 5

ANUBIS

An Underground Belayed In-Shaft

- Instrumenting ATLAS access shaft bottom and cavern ceiling for HL-LHC
- Detector ~25m from IP. ATLAS Cavern acts as decay volume
- Integrated with ATLAS trigger
 - No shielding against collisions besides the ATLAS detector
 - For a background similar to the LLP searches in ATLAS muon system, ANUBIS will need 50-90 events for evidence
- Incorporated as an official sub-project of ATLAS
- Same RPC as the ATLAS muon system upgrade.
 - No dedicated R&D
 - Large production lowers costs
- Layers of RPC triplets separated by air gap

Parameter	Specification
Time resolution	$\delta t \leq 0.5$ ng

Parameter	Specificati
Time resolution	$\delta t \lesssim 0.5 \ { m n}$
Angular resolution	$\delta \alpha \lesssim 0.01$
Spatial resolution	$\delta x, \delta z \lesssim 0$
Per-layer hit efficiency	$arepsilon\gtrsim98\%$

proAnubis

- proANUBIS: demonstrator built during 2022, installed in ATLAS cavern in March 2023
 - Three-layer tracking station using ATLAS HL-LHC upgrade RPCs
- Main mission: validate background estimations:
 - Measure hit/track efficiency
 - Identify muons from ATLAS triggers
 - Measure punch-through rates
 - Measure comics
 - Gauge cavern background radiation's impact on occupancy rate
- Currently commissioning!!

FASER

ForwArd Search ExpeRiment at the LHC

- Forward region close to ATLAS: 480m downstream of the ATLAS IP
- (HNL, dark vector, dark scalar, axions, light SUSY particles)
 - very rarely produced
 - along the beamline at low pT $\sim 2\%$ of pions produced within FASER angular acceptance
- Also measurements on collider-produced neutrinos
- Fast! Lol (2018), approved (2019), Installation (2020)
- Data-taking started in Run3 (2022)!!

FASER details

- Small detector composed of:
 - Emulsion based neutrino detector (FASERnu)
 - For neutrino physics, acts as shielding for LLP searches
 - Decay volume of 1.5m
 - Multiple scintillator systems (triggering, timing, vetoing)
 - modules. 0.5 B-field applied
 - Calorimeter system

E. Torró Higgs 2023 Beijing, Dec 2023

Proposal: <u>1708.09389</u> Tech. Proposal: <u>https://cds.cern.ch/record/2651328</u>

FASER operations and first results!

- Installed and commissioned during 2021/2022
- Recorded 37/fb of data in 2022!!
- First Dark photon analysis with 27/fb!!
 - 90%CL limits in previously unproved phase space

FASER Total Integrated Luminosity [fb LHC P1 Stable (ATLAS) 90 FASER Recorded 80 Total Delivered: 70.4 fb⁻¹ **70**F Total Recorded: 68.4 fb 60 **50**E 40⊟ 30E 20È **10**E 30/06/22 10/11/22 23/03/23 03/08/23 Day in Year

Successful 2023 data taking: > 30/fb collected

x10 more data expected!

Proposed large upgrade to FASER being discussed: Forward Physics Facility (<u>https://arxiv.org/pdf/2203.05090.pdf</u>)

much better sensitivity for dark Higgs for FASER2 (5m decay volume) at the FPF (see slide27)

SHiP

Search for Hidden Particles

- General purpose beam dump experiment at the SPS North Area
- existing beam line and ECN3 cavern
 - New location at existing beam line with improved muon shield: similar physics reach at much lower cost!
 - Proposal to be part of ECN3 submitted to SPSC in Oct 23 for a decision expected before the end of the year
 - Aiming for commission with beam in 2030, to begin taking data in 2031, running for 15 years of running

Proposal for ECN3 (Oct 2023): <u>SPSC-P-369.pdf</u>

Target: light, very weakly interacting long lived particles (HNL, dark vector, dark scalar, axions, light SUSY particles)

Originally designed for dedicated new beam line with a new experimental cavern (ECN4)... now fully re-optimised for

SHiP details

- Full spectrometer allows measurements of \bullet
 - Invariant masses, impact parameter, decay vertex
 - Distinguish between signal models
- If LLPs are discovered, detector can perform precision measurements of LLPs
- Background taggers and timing detector allow powerful background rejection

- Several groups outside SHiP evaluating additional uses:
 - Development of radiation hard electronics
 - Nuclear physics

E. Torró Higgs 2023 Beijing, Dec 2023

Proposal for ECN3 (Oct 2023): <u>SPSC-P-369.pdf</u>

Sensitivity in Exotics Higgs decays

Main benchmark in transverse detectors:

O(100GeV) physics

- Exotics Higgs decays
- Dark sector new scalars lacksquare

Mathusla Updated LoI: 2009.01693 m(LLP) = 20 GeV

E. Torró Higgs 2023 Beijing, Dec 2023

CMS m(LLP) = 15 GeV

(careful!! Not exactly the same benchmark!)

ANUBIS (FIP2 2022): 2009.01693 m(LLP) = 20 GeV

Codex-b (FIP2 2022): m(LLP) = 10 GeV(careful!! Not exactly the same benchmark!) $m_{A'} = 10 \,\mathrm{GeV}$

Sensitivity in Exotics Higgs decays

Main benchmark in transverse detectors:

O(100GeV) physics

- Exotics Higgs decays
- Dark sector new scalars

Adding everything in one plot for comparison...

E. Torró Higgs 2023 Beijing, Dec 2023

Sensitivity in Exotics Higgs decays

Main benchmark in transverse detectors:

O(100GeV) physics

- Exotics Higgs decays
- Dark sector new scalars

Adding everything in one plot for comparison...

E. Torró Higgs 2023 Beijing, Dec 2023

Gain in sensitivity wrt ATLAS/CMS HL-LHC:

- 3 orders of magnitude towards high ctau
- ~1 order of magnitude towards lower ctau
- ~2 orders of magnitude in sensitivity

-LHC: ctau er ctau

Sensitivity to dark scalars

• Singlet scalar LLP s mixing with Higgs mixing angle θ

1 : Production in exotic B, D, Kmgson decays only

V orter lifetii

Sensitivity to dark scalars

• Singlet scalar LLP s mixing with Higgs mixing angle θ

1 : Production in exotic B, D, Kmgson decays only

10-5

 10^{-8}

FASER

 New detectors explore orders of magnitude of new parameter space. • All combined, they extend the reach of various intensity-frontier proposals like

Bonus: LLPs @ FCC-hh, FCC-ee

HECATE: HErmetic CAvern TrackER. A long-lived particle detector concept for FCC-ee or CEPC

For FCC-hh / FCC-ee, main detector will be relatively smaller than the cavern

- Cover detector cavern walls with scintillator plates or RPCs
- >= 2 layers of 1 m² separated by a sizeable distance timing
- >= 4 layers for good tracking
- 4π coverage LLP detector
- FCC main detector as active veto 10^{-5} • Sensitive to a unique area of phase space 10^{-6} 10^{-7} U^2 10^{-8} 10^{-9} Example: HNLs 10^{-10}

 10^{-11}

Proposal: <u>2011.01005</u>

Cavern size: r~15 m and z~50 m Main detector size =(10m)

Conclusion

- Future experiments will be sensitive to large regions of phase space
- Many ideas for dedicated LLP detectors!
 - A relatively cheap way to explore a large region of the parameter space
 - Complementarity among different detectors
- Most of the current proposed experiments are aiming for data collection in HL-LHC.
 - Some already running!
- For the future....
 - Future colliders could probe a large part of the LLP parameter space
 - Good to include LLPs in the main physics program when the main detectors are being designed

