

Precision Higgs boson measurements at LHC

Hongtao Yang (杨洪洮) on behalf of ATLAS and CMS Collaborations University of Science and Technology of China

Higgs 2023 IHEP, Beijing November 27, 2023

Precision is important

- Higgs boson is fundamental. We need best knowledge on its properties
- Precision could be portal to new physics
- With LHC Run 2 data, ATLAS and CMS have measured Higgs boson mass, width, and production cross-sections with yet a new level of precision
- Will focus on results released since Higgs 2022, but still cannot cover all updates due to limited time. Sorry if your favorite topics are missing!

Hongtao Yang (USTC)

Introduction

ATLAS and CMS experiments at LHC

Mass measurement

Hongtao Yang (USTC)

Nov 27, 2023, Higgs 2023

5

$H \rightarrow yy$ measurement results

Syst. source	Impact [MeV]	Photon energy scale
Photon energy scale	83	Filoton energy scale
Signal-bkg interference	26	Z→ee calibration
Energy resolution	15	E _T -dep. e energy scale
Bkg modeling	14	$e \rightarrow \gamma$ extrapolation
Vertex	4	Conversion modeling
Signal modeling	1	

Good consistency

between conversion type, different detector regions etc.

- lepton-pair candidate (+15% improvement in precision)
- Categorization based on per-event 4l mass resolution (+8%)
- 2D fit of m₄ and matrix-element-based (MELA) discriminant (+4%)

Measurement in $H \rightarrow ZZ^* \rightarrow 4I$ channel

Beam-spot constraint in muon reconstruction + kinematic fit to Z-pole for on-shell

$H \rightarrow ZZ^* \rightarrow 4I$ measurement results

- Measurement fully driven by data stat uncertainty
- Main syst from muon momentum and electron energy scale uncertainties
- Analysis validated with $Z \rightarrow 4I$ fit as well as 1D m_H fit

Combining yy and 4I, Run 1 and Run 2

18% compatibility among input measurements

- Uncorrelate signal rates (γγ vs. 4l, Run1 vs. Run 2) to reduce model dependence
- The most precise measurement of m_H (0.09%) up to date
- ATLAS+CMS combination under preparation: will provide best m_H for experiment & theory

Hongtao Yang (USTC)

on	Syst. source	lmp [Me
Syst. $+ 0.27$ GoV	Z→ee calibration	44
± 0.04) GeV	E _T -dep. e energy scale	28
± 0.09) GeV	$H \rightarrow \gamma \gamma$ signal-bkg interference	17
± 0.04) GeV	y lateral shower shape	16
± 0.09) GeV	y conversion modeling	15
± 0.03) GeV ± 0.18) GeV	e/y energy resolution	1-
± 0.07) GeV	H→vv background modeling	1(
± 0.06) GeV	Muon momentum scale	8
<u> </u>	Others	7
m _н [GeV]	arXiv:2308 0/775 (accepted by Pl	RI)

<u>al AIV.2000.04770 (accepted by FIL)</u>

Width measurement

Hongtao Yang (USTC)

10

Off-shell measurements

- By assuming identical coupling between on-shell and off-shell productions:

Hongtao Yang (USTC)

Evidence for off-shell production has been claimed by both ATLAS and CMS

 $\Gamma(H) = (\mu_{off-shell}/\mu_{on-shell})\Gamma_{SM}(H)$

Nov 27, 2023, Higgs 2023

11

Updated measurement in $H \rightarrow ZZ^* \rightarrow 4I$ channel

- Study off-shell ($m_{41} > 220$ GeV) production in VBF-tagged, VH-tagged, and untagged regions
- Measured Γ(H) consistent with SM. Consistent ggF and VBF+VH off-shell signal strengths

Hongtao Yang (USTC)

XS measurements

Hongtao Yang (USTC)

Inclusive production cross-sections

Hongtao Yang (USTC)

	ATLAS		√s m _H	= 13 T = 125.0	eV, 36.)9 GeV	1 - 139 , y _H < 2	fb⁻ 2.₹
σ_{ggF}	1	-0.08	-0.03	-0.02	0.04	0.00	-
σ_{VBF}	-0.08	1	0.02	0.01	0.03	-0.02	-
σ_{WH}	-0.03	0.02	1	-0.06	0.04	-0.06	-
σ_{ZH}	-0.02	0.01	-0.06	1	0.01	-0.02	_
σ _{tīH}	0.04	0.03	0.04	0.01	1	-0.56	-
σ_{tH}	0.00	-0.02	-0.06	-0.02	-0.56	1	-
	о ggF	GVBF	σ _{WH}	σ_{ZH}	$\sigma_{t\bar{t}H}$	σ_{tH}	

ATLAS signal strength $\mu = 1.05 \pm 0.06 = 1.05 \pm 0.03(\text{stat.}) \pm 0.03(\text{exp.}) \pm 0.02(\text{bkg. th.}) \pm 0.04(\text{sig. th.})$ CMS signal strength $\mu = 1.002 \pm 0.057 = 1.002 \pm 0.029(\text{stat.}) \pm 0.033(\text{syst.}) \pm 0.036(\text{sig. th.})$

Production cross-section times decay BR

Nature 607 (2022) 52

Hongtao Yang (USTC)

 $\sigma \times B$ normalized to SM prediction

Interesting combination of production & decay still to be explored: see our joker talk!

Dive into phase-space sensitive to BSM

- Inclusive measurements are not enough: go differential to validate SM & probe potential **new physics!**
- The Simplified Template XS (STXS) framework has been widely implemented in LHC Higgs "coupling" analyses
- Run 2 LHC measurements features exploring high p_T(H) regime etc. that are sensitive to new physics effects

Hongtao Yang (USTC)

- Inclusive measurements are not enough: go differential to validate SM & probe potential **new physics!**
- The Simplified Template XS (STXS) framework has been widely implemented in LHC Higgs "coupling" analyses
- Run 2 LHC measurements features exploring high p_T(H) regime etc. that are sensitive to new physics effects

Dive into phase-space sensitive to BSM

Nov 27, 2023, Higgs 2023

17

Boosted ggF/VBF, H→bb

Prod. mode	ggF	VBF
Obs. (exp.) Z ₀ [σ]	1.2 (0.9)	3.0 (0.9)

Hongtao Yang (USTC)

Nov 27, 2023, Higgs 2023

Boosted VH→qqbb

- VH, $H \rightarrow bb$ traditionally studied in V(lep) channel
 - Measure in $p_T(V)$ bins for good resolution
- In boosted regime, can look into V(qq) channel by reconstructing both H and V as large-R jets
 - Measure in $p_T(H)$ bins

рн ^{т,J} range [GeV]	[250, 450)	[450, 650)
Signal strength	$0.6^{+1.8}_{-1.7}$	$0.6^{+1.3}_{-1.2}$

Hongtao Yang (USTC)

- With Run 1+2 data, we have
 - 0.09% precision on Higgs boson mass
 - ~50% precision on Γ_H from off-shell
 - ~10% precision on production cross-sections
- Run 3 ongoing: will hopefully **triple** the stats
 - Perfect time to explore new ideas!
- ×20 larger Higgs boson sample at HL-LHC. Will hopefully improve precision by ~5
 - Higgs boson precision measurements will guide the future of our field
 - We always do better than expected. Stay tuned!

Conclusions

- "A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery", Nature 607 (2022) 52
- "Measurement of the Higgs boson mass with $H \rightarrow \gamma \gamma$ decays in 140 fb⁻¹ of $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector", <u>PLB 847 (2023) 138315</u>
- "Electron and photon energy calibration with the ATLAS detector using LHC Run 2 data", <u>arXiv:2309.05471</u> <u>(accepted by JINST)</u>
- "Combined measurement of the Higgs boson mass from the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channels with the ATLAS detector using $\sqrt{s} = 7$, 8 and 13 TeV pp collision data", <u>arXiv:2308.04775 (accepted by PRL)</u>
- "Evidence of off-shell Higgs boson production from ZZ leptonic decay channels and constraints on its total width with the ATLAS detector", PLB 846 (2023) 138223
- "Determining the relative sign of the Higgs boson couplings to W and Z bosons using VBF WH production with the ATLAS detector", <u>ATLAS-CONF-2023-057</u>
- "Measurement of high-momentum Higgs boson production in association with a vector boson in the qqbb final state with the ATLAS detector", <u>ATLAS-CONF-2023-067</u>

ATLAS references

- "A portrait of the Higgs boson by the CMS experiment ten years after the discovery", <u>Nature 607 (2022) 60</u>
- "Measurement of the Higgs boson width and evidence of its off-shell contributions" to ZZ production", Nat. Phys. 18 (2022) 1329
- "Measurement of the Higgs boson mass and width using the four leptons final state", <u>CMS-PAS-HIG-21-019</u>
- "Measurement of the ttH and tH production rates in the $H \rightarrow bb$ decay channel with 138 fb⁻¹ of proton-proton collision data at $\sqrt{s} = 13$ TeV", <u>CMS-PAS-HIG-19-011</u>
- "Search for boosted Higgs bosons produced via vector boson fusion in the $H \rightarrow bb$ decay mode using LHC proton-proton collision data at $\sqrt{s} = 13$ TeV", <u>CMS-PAS-</u> HIG-21-020

Backup

Hongtao Yang (USTC)

Reduction of e/y energy scale syst from linearity fit

Hongtao Yang (USTC)

Higgs boson productions ATLAS vs. CMS

Hongtao Yang (USTC)

Nov 27, 2023, Higgs 2023

25

Higgs boson decays ATLAS vs. CMS

Hongtao Yang (USTC)

Nov 27, 2023, Higgs 2023

26

Prod×decay ATLAS vs. CMS

Coupling strength tests

Hongtao Yang (USTC)

Ratios of coupling strengths

Hongtao Yang (USTC)

Determine relative sign between kw and kz

- with SM with WH→lvbb counting analysis in VBF topology
- Negative sign of λ_{WZ} excluded by >8 σ

Hongtao Yang (USTC)

• For the first time, the sign of λ_{WZ} is determined to be consistent

What can we still learn after 10 years of discovery?

Hongtao Yang (USTC)

nature

Explore content \checkmark About the journal \checkmark Publish with us \checkmark

nature > articles > article

Article Open Access Published: 04 July 2022

A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery

The ATLAS Collaboration

<u>Nature</u> 607, 52–59 (2022) Cite this article 20k Accesses 6 Citations 425 Altmetric Metrics

nature

Explore content 🗸 About the journal \checkmark Publish with us \checkmark

<u>nature</u> > <u>articles</u> > article

Article Open Access Published: 04 July 2022

A portrait of the Higgs boson by the CMS experiment ten years after the discovery

The CMS Collaboration

Nature **607**, 60–68 (2022) Cite this article 13k Accesses 7 Citations 411 Altmetric Metrics

A lot

