Hantian Zhang

Institute for Theoretical Particle Physics (TTP) Karlsruhe Institute of Technology (KIT)

In collaboration with Joshua Davies, Kay Schönwald and Matthias Steinhauser Based on [JHEP 08 (2022) 259] & [JHEP 10 (2023) 033]

NLO Electroweak corrections to $gg \rightarrow HH$ and $gg \rightarrow Hg$

Higgs 2023 - Beijing

Institute for Theoretical Particle Physics

Motivation of $gg \rightarrow HH$: study Higgs self-coupling

• Probe Higgs self-coupling in pair productions, and compare with the Standard Model value $\lambda = m_H^2/(2v^2) \approx 0.13$ in the Higgs potential

$$V(H) = \frac{1}{2} m_H^2 H^2 + \lambda v H^3 + \frac{\lambda}{4} H^4$$

Gluon-fusion channel dominates Higgs boson pair production at LHC ullet

New Physics opportunity \Rightarrow Talk by Teppei Kitahara [Iguro, Kitahara, Omura, **Zhang**, *Phys.Rev.D* 107 (2023) 7, 075017]

Motivation of $gg \rightarrow Hg$: study p_T^H spectrum

• Dominant channel for Higgs boson production with large transversal momentum p_T^H at LHC

Overview for Higgs + jet \Rightarrow Talk by Xuan Chen

[Chen, Huss, Jones, Kerner, Lang, Lindert, Zhang, JHEP 03 (2022) 096]

Overview of QCD and EW calculations (HH)

• NLO QCD with full m_t -dependence are known

• Expansion-by-Region & Numerical approaches: [Daoson, Dittmaier, Spira, 98'], [Grigo, Hoff, Melnikov, Steinhauser, 13'], Mishima, Steinhauser, Wellmann, 19'], [Bellafronte, Degrassi, Giardino, Gröber, Vitti, 22']

QCD beyond NLO are available in large- m_t and small-t limit / expansion

- At NNLO: [de Florian, Mazzitelli, 13'], [Grigo, Melnikov, Steinhauser, 14' and Hoff, 15'], [Davies, Herren, Mishima, Steinhauser, 19', 21'], [Grazzini, Heinrich, Jones, Kallweit, Kerner, Lindert, Mazzitelli, 18'], [Davies, Schönwald, Steinhauser, 23']
- At N³LO: [Spira, 16'], [Gerlach, Herren, Steinhauser, 18'], [Banerjee, Borowka, Dhabi, Gehrmann, Ravindran, 18'], [Chen, Li, Chao, Wang, 19']

NLO EW become available recently in [Also see talks by Xiao Zhang and Thomas Stone] \bullet

- Higgs self-coupling corrections [Borowka, Duhr, Maltoni, Pagani, Shivaji, Zhao, 19']
- limit [Mühlleitner, Schlenk, Spira, 22']
- Full top-induced EW corrections in large-*m_t* expansion [Davies, Schönwald, Steinhauser, Zhang, 23']

[Borowka, Geiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke, 16'], [Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher, 18'], [Degrassi, Giardino, Gröber, Bonciani, 18'], [Xu, Yang, 18'], [Davies, Mishima, Steinhauser, Wellmann, 18', 19'], [Davies, Heinrich, Jones, Kerner,

Yukawa-top corrections in high-energy expansion [Davies, Mishima, Schönwald, Steinhauser, Zhang, 22'] and large-m_t

4

This talk

Recent NLO EW calculations

JHEP 08 (2022) 259 & JHEP 10 (2023) 033

 p_T^H (GeV)

Recent NLO EW calculations

JHEP 08 (2022) 259 & JHEP 10 (2023) 033

- Estimate size of full EW correction

10³

 p_T^H (GeV)

Recent NLO EW calculations

JHEP 08 (2022) 259 & JHEP 10 (2023) 033

 10^{3}

 p_T^H (GeV)

Part 1: Full NLO EW corrections in large-*m_t* limit (HH)

 \bullet

• Aim: analytic large- m_t expansion in $\sqrt{s} \le 300 \,\text{GeV}$ region

[Davies, Schönwald, Steinhauser, Zhang, JHEP 10 (2023) 033]

Sample two-loop diagrams involving SM fields: $\{t, b, H, \gamma, Z, W^{\pm}, \chi, \phi^{\pm}\}$ and ghosts: $\{u^{\gamma}, u^{Z}, u^{\pm}\}$

Part 1: Full NLO EW corrections in large- m_t limit (H+jet)

 \bullet

• Aim: analytic large- m_t expansion in $\sqrt{s} \le 300 \,\text{GeV}$ region

[Davies, Schönwald, Steinhauser, Zhang, JHEP 10 (2023) 033]

Sample two-loop diagrams involving SM fields: $\{t, b, H, \gamma, Z, W^{\pm}, \chi, \phi^{\pm}\}$ and ghosts: $\{u^{\gamma}, u^{Z}, u^{\pm}\}$

Large- m_t expansion and EW renormalisation

- Expansion hierarchy: $m_t^2 \gg \xi_W m_W^2$, $\xi_Z m_Z^2 \gg s, t, m_H^2, m_W^2, m_Z^2$
- Expand and calculate in general R_{ξ} gauge

Large- m_t expansion and EW renormalisation

- Expansion hierarchy: $m_t^2 \gg \xi_W m_W^2$, $\xi_Z m_Z^2 \gg s, t, m_H^2, m_W^2, m_Z^2$
- Expand and calculate in general R_{ξ} gauge

- On-Shell renormalise input parameters $\{e, m_W, m_Z, m_t, m_H\}$ in G_{μ} scheme

• ξ_W, ξ_Z cancel after external Higgs fields OS renormalisation \Rightarrow gauge parameter independent

Rapid convergence observed

Matrix elements for H+jet $(gg \rightarrow gH)$ @ LO & NLO QCD

[Davies, Schönwald, Steinhauser, Zhang, JHEP 10 (2023) 033]

Matrix elements for H+jet $(gg \rightarrow gH)$ @ NLO EW

[Davies, Schönwald, Steinhauser, Zhang, JHEP 10 (2023) 033]

Matrix elements for $gg \rightarrow HH @ LO$

 $\tilde{\mathscr{U}}^{(0)}_{\mathrm{ggHH}}$ @ LO

Good convergence observed

[Davies, Schönwald, Steinhauser, Zhang, JHEP 10 (2023) 033]

380

Matrix elements for $gg \rightarrow HH @$ NLO EW

Convergence not good

[Davies, Schönwald, Steinhauser, Zhang, JHEP 10 (2023) 033]

Matrix elements for $gg \rightarrow HH$ @ NLO EW

$$\mathcal{M} = \frac{1}{8^2 \, 2^2} \sum_{\text{col pol}} \sum_{\text{pol}} |\mathcal{A}|^2 = \frac{1}{16} \left(X_0^{\text{ggHH}} s \right)^2 \tilde{U}_{\text{ggHH}}$$

Famous di-Higgs destructive interference (vanishing ME at production threshold) is lifted !!

3-loop QCD corrections also **lifts** this destructive interference [Grigo, Melnikov, Steinhauser, 14']

[Davies, Schönwald, Steinhauser, Zhang, JHEP 10 (2023) 033]

Part 2: Leading Yukawa corrections at high energies

Sample two-loop diagrams contributing to leading Yukawa-top corrections $\sim \alpha_{\rm c} y_t^4$ \bullet

- Yukawa-top corrections are **not small**, $y_t^2 = \frac{\alpha m_t^2}{2 \sin^2 \theta_w m_w^2}$ ullet
- Aim: analytic high-energy expansion in $p_T^H \ge 120 \,\text{GeV}$ region

[Davies, Mishima, Schönwald, Steinhauser, Zhang, JHEP 08 (2022) 259]

1. Expansion hierarchy: $\left\{s, t \gg m_t^2 \approx \left(m_H^{\text{int}}\right)^2 \gg \left(m_H^{\text{ext}}\right)^2\right\}$ or $\left\{s, t \gg m_t^2 \gg \left(m_H^{\text{int}}\right)^2, \left(m_H^{\text{ext}}\right)^2\right\}$

Analytic techniques: Asymptotic expansions -> Differential equations -> Mellin-Barnes integrals

- 1. Expansion hierarchy: $\left\{s, t \gg m_t^2 \approx \left(m_H^{\text{int}}\right)^2 \gg \left(m_H^{\text{ext}}\right)^2\right\}$
- System of differential equations for 140 Master Integrals from IBP reduction 2.

$$\frac{\partial}{\partial \left(m_t^2\right)} \mathbf{I} = M(s, t, m_t^2, \epsilon)$$

Plug in **power-log ansatz** for each master integral 3.

 ε) **I** with **I** = $(\mathscr{I}_1, ..., \mathscr{I}_{140})^T$

$$(s,t) \epsilon^{i} \left[m_{t}^{2}\right]^{j} \left[\log(m_{t}^{2})\right]^{k}$$

- 1. Expansion hierarchy: $\left\{ s, t \gg m_t^2 \approx \left(m_H^{\text{int}} \right)^2 \gg \left(m_H^{\text{ex}} \right)^2 \right\}$
- System of differential equations for 140 Master Integrals from IBP reduction 2.

$$\frac{\partial}{\partial (m_t^2)} \mathbf{I} = M(s, t, m_t^2, \epsilon) \mathbf{I} \quad \text{with} \quad \mathbf{I} = (\mathscr{I}_1, \dots, \mathscr{I}_{140})^T$$

Plug in **power-log ansatz** for each master integral 3.

$$\mathcal{I}_{n} = \sum C_{(n)}^{ijk}(s,t) \epsilon^{i} \left[m_{t}^{2}\right]^{j} \left[\log(m_{t}^{2})\right]^{k}$$

$$\left\{ \frac{2}{4} \right\}^2$$

Novel Math. method & Automated algorithm

4. Solve boundary master integrals in asymptotic limit $m_t \rightarrow 0$ with Mellin-Barnes method by AsyInt [Schönwald, Zhang] with help of asy.m [Smirnov], MB.m [Czakon], HarmonicSums.m [Ablinger], Sigma.m and EvaluateMultiSums.m [Schneider]

- 1. Expansion hierarchy: $\left\{ s, t \gg m_t^2 \approx \left(m_H^{\text{int}} \right)^2 \gg \left(m_H^{\text{ex}} \right)^2 \right\}$
- 2. System of differential equations for 140 Master Integrals from IBP reduction

$$\frac{\partial}{\partial (m_t^2)} \mathbf{I} = M(s, t, m_t^2, \epsilon) \mathbf{I} \quad \text{with} \quad \mathbf{I} = (\mathcal{I}_1, \dots, \mathcal{I}_{140})^T$$

Plug in **power-log ansatz** for each master integral 3.

$$\mathcal{I}_{n} = \sum C_{(n)}^{ijk}(s,t) \epsilon^{i} \left[m_{t}^{2}\right]^{j} \left[\log(m_{t}^{2})\right]^{k}$$

- 5. Apply Padé approximations at the level of form factors as a precision tool

$$\left\{ \frac{2}{4} \right\}^2$$

Novel Math. method & Automated algorithm

4. Solve boundary master integrals in asymptotic limit $m_t \rightarrow 0$ with Mellin-Barnes method by AsyInt [Schönwald, Zhang] with help of asy.m [Smirnov], MB.m [Czakon], HarmonicSums.m [Ablinger], Sigma.m and EvaluateMultiSums.m [Schneider]

Padé as precision tool: showcase of QCD integrals

[Davies, Mishima, Schönwald, Steinhauser, JHEP 06 (2023) 063]

Padé approximation:

$$\sum_{i=0}^{N} f_i(m_t^2)^i x^i \quad \Rightarrow \quad \mathscr{F}^N = \lim_{x \to 1} \frac{a_0 + a_1 x + \dots + a_n x^n}{1 + b_1 x + \dots + b_m x^m} = \lim_{x \to 1} [n/m]$$

FIESTA Ο

Solid color lines: Padé improved results using MIs from $\mathcal{O}(m_t^{116})$ in two expansion approaches **Dashed color lines:** Naive expansions at high energies to $\mathcal{O}(m_t^{116})$

Form factors for $gg \rightarrow HH @$ NLO Yukawa

[Davies, Mishima, Schönwald, Steinhauser, Zhang, JHEP 08 (2022) 259]

Solid color lines: Padé improved results using MIs from $\mathcal{O}(m_t^{116})$ in two expansion approaches **Dashed color lines:** Naive expansions at high energies to $\mathcal{O}(m_t^{116})$

Form factors for $gg \rightarrow HH @$ NLO Yukawa

[Davies, Mishima, Schönwald, Steinhauser, Zhang, JHEP 08 (2022) 259]

Grey lines: Coincide with colourful lines (two approaches agree)

Form factors for $gg \rightarrow HH @$ NLO Yukawa

[Davies, Mishima, Schönwald, Steinhauser, Zhang, JHEP 08 (2022) 259]

Conclusions and outlook

- $^{\circ}$ We analytically compute NLO leading Yukawa corrections to $gg \rightarrow HH$ in high-energy expansion
 - Precise results for $p_T^H > 120 \text{ GeV}$
- We analytically compute full NLO EW corrections to $gg \rightarrow HH$ in large- m_t expansion
 - Destructive di-Higgs interference at production threshold is lifted
 - EW corrections can reach a few tens of percent (positive) w.r.t LO in this region
- We also consider full NLO EW corrections to $gg \rightarrow gH$ in large- m_t expansion
 - Good convergence observed, corrections are small
- Future work: complete NLO EW corrections to $gg \rightarrow HH$ in whole phase space region by including *t*-expansion.

JHEP 08 (2022) 259 & JHEP 10 (2023) 033

Backup Slides

Ratio plot of matrix elements for NLO EW / LO

• Size of NLO EW corrections (positive) can easily reach O(10%) w.r.t. LO at low-energy region • EW effects are expected to be significant in high-energy region (stay tuned to our future papers)

Matrix elements for $gg \rightarrow HH @$ NLO EW

 \tilde{U}_{ggHH} plot up to different expansion order $1/m_t^n$

[Davies, Schönwald, Steinhauser, Zhang, JHEP 10 (2023) 033]

Cut through W-t-b worsen convergence at $m_t + m_b + m_W \approx 250 \,\mathrm{GeV}$

Good convergence restored by excluding W-t-b contributions

Convergence of expansions for $gg \rightarrow HH$ form factors

[Davies, Mishima, Schönwald, Steinhauser, Zhang, JHEP 08 (2022) 259]

 $\mathscr{A}^{\mu\nu} = T_1^{\mu\nu} \mathscr{F}_{\text{box}1} + T_2^{\mu\nu} \mathscr{F}_{\text{box}2}^{\mu\nu}$

The benchmark is expansion at $\mathcal{O}\left(m_{H^{(\mathrm{ext})}}^4, \delta^3, m_t^{116}\right)$ $m_H^{(int)}$ $\delta = 1$ \mathcal{M}_{t}

Color points: Convergence plot of different expansion orders by ratios to the benchmark at fixed $p_T^H = 200$ GeV.

