

[1] Review \& Motivation

- Partial list of 4HDM literature

- Many use discrete groups in model building
- Q: Which to choose? Guess

work?

- A: Some math results needed to guide
phenomenological search
[9] D. Wyler, Phys. Rev. D 19, 3369 (1979) doi:10.1103/PhysRevD.19.3369
[10] M. Leurer, Y. Ni [33] L. Lavoura, Phys. Rev. D 44, 1610-1612 (1991) doi:10.1103/PhysRevD. 44.1610
 3213(93)90112-3
[11] R. González Felip no.7, 2953 (2014)
[12] R. Gonzalez Felip doi:10.1103/PhysR
[13] R. González Felip doi:10.1103/PhysR
[14] I. Bree, S. Carrol doi:10.1140/epjc/s
[15] S. Pakvasa and H. 5] 2
[16] E. Ma, Phys. Rev.
[17] E. Derman and H
[18] G. A. Christos, Au
[19] S. Rajpoot, Phys.
[20] T. Kobayashi, Let
[21] C. H. Albright, doi:10.1103/PhysR
[22] M. Drees, Int. J. I
[23] H. E. Haber and Y
[24] K. Griest and M.
[25] K. Griest and M.
[26] M. Masip and A. R arXiv:hep-ph/950t
[27] Y. Grossman, I [arXiv:hep-ph/940:
[28] E. Ma, Phys. Rev.
[29] E. Ma, Phys. Rev
[30] T. V. Duong and I
[31] A. Franklin, Rev.
[32] N. G. Deshpand doi:10.1103/PhysR
[34] L. Lavoura, Phys. Rev. I
[35] N. G. Deshpande doi:10.1103/PhysRevD. 4
36] L. Lavoura, Phys. arXiv:hep-ph/9907538
[37] G. Cree and H. E. Loga arXiv:1106.4039 [hep-ph
[38] M. A. Arroyo-Ureña, J. 45, no.2, 023118 (2021)
[39] W. Rodejohann and U [arXiv:1903.00983 [hep-p
[40] B. L. Gonçalves, M. Kne
[41] R. A. Porto and A. Zee [arXiv:0712.0448 [hep-pb
[42] R. A. Porto and A. Z arXiv:0807.0612 hep-p

43] A. E. Cárcamo Hernánd 05, 215 (2021) doi:10.10
[44] V. V. Vien, Nucl. Phys.
45] N. G. Deshpande and E.
[46] D. Meloni, S. Mori doi:10.1016/j.physletb. 2 C

L. Lavoura, [hep-ph]].

 N [arXiv:hep-ph/9308277 [hep-ph]].
D. Meloni, S. Mori doi:10.1016/j.physletb. 20

] M. S. Boucenna, M. (2011) doi:10.1007/JHEI
[50] R. de Adelhart Toorop doi:10.1016/j.nuclphysb.:
[51] C. Bonilla, J. Herms, O.
[52] I. P. Ivanov and V. Ket [arXiv:1203.3426 [hep-ph
[53] J. L. Diaz-Cruz and doi:10.1016/j nuclphysb [arXiv:hep-ph/0106291 [hep-ph]]. 6708/2006/04/039 [arXiv:hep-ph/0601001 [hep-ph]]. [arXiv:0809.0226 [hep-ph]].
[58] W.

Grimus and

 [arXiv:0811.4766 [hep-ph]]. 3899/36/11/115007 [arXiv:0906.2689 [hep-ph]].[62] P. M. Ferreira and L. Lavoura, [arXiv:1111.5859 [hep-ph]]. [arXiv:1208.1062 [hep-ph]]. (arXiv:1401.1818 [hep-ph]]. doi:10.1007/BF02768793 [arXiv:hep-ph/0005113 [hep-ph]]. [arXiv:1011.3016 [hep-ph]].
[72] K. Yagyu, [arXiv:1204.0424 [hep-ph]].
doi:10.1103/PhysRevD. 90.075015 [arXiv:1408.0796 [hep-ph]]
E. Ma and G. Rajasekaran, Phys. Rev. D 64, 113012 (2001) doi:10.1103/PhysRevD. 64113012

6] X. G. He, Y. Y. Keum and R. R. Volkas, JHEP 04, 039 (2006) doi:10.1088/1126-
W. Grimus and L. Lavoura, JHEP 09, 106 (2008) doi:10.1088/1126-6708/2008/09/106 doi:10.1016/j.physletb.2008.12.041 Lavoura, Phys. Lett. Biv:
59] W. Greple 0 (arXiv:0810.4516 [hep-ph].

60] W. Grimus and L. Lavoura, Phys. Lett. B 687, 188-193 (2010) doi:10.1016/j.physletb.2010.03.025 [arXiv:0912.4361 [hep-ph]].

61] W. Grimus, L. Lavoura and P. O. Ludl, J. Phys. G 36, 115007 (2009) doi:10.1088/0954-
[63] N. W. Park, K. H. Nam and K. Siyeon, Phys. Rev. D 83, 056013 (2011) doi:10.1103/PhysRevD.83.056013 [arXiv:1101.4134 [hep-ph]]

64] Y. BenTov, X. G. He and A. Zee, JHEP 12, 093 (2012) doi:10.1007/JHEP12(2012)093

5] Y. Grossman and C. Peset, JHEP 04, 033 (2014) doi:10.1007/JHEP04(2014)033
[66] A. E. Nelson and L. Randall, Phys. Lett. B 316, 516-520 (1993) doi:10.1016/0370-2693(93)91037-
N. Krasnikov, G. Kreyerhoff and R. Rodenberg, Nuovo Cim. A 107, 589-596 (1994)
A. Aranda and M. Sher, Phys. Rev. D 62, 092002 (2000) doi:10.1103/PhysRevD. 62.092002

9] G. Marshall and M. Sher, Phys. Rev. D 83, 015005 (2011) doi:10.1103/PhysRevD.83.015005
H. Kawase, JHEP 12, 094 (2011) doi:10.1007/JHEP12(2011)094 [arXiv:1110.3861 [hep-ph]]. T. E. Clark, S. T. Love and T. ter Veldhuis, Phys. Rev. D 85, 015014 (2012) doi:10.1103/PhysRevD. 85.015014 [arXiv:1107.3116 [hep-ph]].

- The groups: abelian $\quad \phi_{k} \mapsto \phi_{k} e^{\frac{2 \pi i n_{k}}{N}}$

$$
\begin{gathered}
\mathbb{Z}_{N} \simeq\langle a\rangle \\
\mathbb{Z}_{N_{1}} \times \mathbb{Z}_{N_{2}} \times \ldots \simeq\left\langle a, a^{\prime}, \ldots\right\rangle
\end{gathered}
$$

- Not all are symmetries of 4HDM
- Igor et al, [arXiv:1112.1660]
- Symmetry of 4HDM --- order < 8
$\mathbb{Z}_{8}, \quad \mathbb{Z}_{7}, \quad \mathbb{Z}_{6}, \quad \mathbb{Z}_{5}, \quad \mathbb{Z}_{4}, \quad \mathbb{Z}_{3}, \quad \mathbb{Z}_{2}$, $\mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{4} \times \mathbb{Z}_{4}$
- https://github.com/JiazhenShao/4HDMToolbox.git --- my code, 4HDM toolbox

$$
\begin{aligned}
& \left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{lll}
\phi_{1} & \phi_{2} \\
\phi_{4} & \phi_{3}
\end{array}\right) \\
& \left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \Longrightarrow \phi_{3} \\
& \phi_{1} \longleftrightarrow \phi_{4} \longleftrightarrow \phi_{2}
\end{aligned}
$$

- The groups: non-abelian, List of nonabelian symmetry of 4HDM ?

[3] Constructing non-abelian groups

- Start with rephasing symmetry group, e.g. $A=\langle a\rangle$
- Add permutation symmetry --- we don't consider other symmetries in this work
- What permutation? don't want to guess.
- Inspired by Igor et al, [arXiv:1206.7108], [arXiv:1210.6553], define $b \in \operatorname{Aut}(A)$.

- $b^{-1} A b=A, b$ as automorphism of $A: b \in \operatorname{Aut}(A) \cdot b^{-1} a b=a^{\prime}$. As an equation

Renormalizable : $V=m_{i j}^{2}\left(\phi_{i}^{\dagger} \phi_{j}\right)+\Lambda_{i j k l}\left(\phi_{i}^{\dagger} \phi_{j}\right)\left(\phi_{k}^{\dagger} \phi_{l}\right)$

Potential with abelian symmetry $A: V(A)=V_{0}+V^{\prime}(A)$.

Potential with additional permutation symmetry b : specify relation among coefficients

Classify discrete symmetry groups of 4HDM scallar sector
$\begin{array}{ll}\cdot & \mathbb{Z}_{8}, \quad \mathbb{Z}_{7}, \quad \mathbb{Z}_{6}, \quad \mathbb{Z}_{5}, \quad \mathbb{Z}_{4}, \quad \mathbb{Z}_{3}, \quad \mathbb{Z}_{2}, \\ \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{4} \times \mathbb{Z}_{4}\end{array} \quad$ do:

- Find out $\operatorname{Aut}(A)$
- Determine and solve equation $b^{-1} a b=a^{\prime}$
- Find out the group, see whether it's a symmetry of 4HDM potential

[6] Example --- extending Z_{5} model

- Using 4HDM toolbox https://github.com/JiazhenShao/4HDM-Toolbox.git
- Unique choice of $Z_{5} 4 \mathrm{HDM}$ model, Invariant under $Z_{5} \simeq\langle a\rangle$:

$$
\begin{aligned}
V\left(\mathbb{Z}_{5}\right)= & V_{0}+\lambda_{1}\left(\phi_{2}^{\dagger} \phi_{1}\right)\left(\phi_{4}^{\dagger} \phi_{1}\right)+\lambda_{2}\left(\phi_{3}^{\dagger} \phi_{4}\right)\left(\phi_{2}^{\dagger} \phi_{4}\right)+\lambda_{3}\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(\phi_{3}^{\dagger} \phi_{2}\right)+\lambda_{4}\left(\phi_{4}^{\dagger} \phi_{3}\right)\left(\phi_{1}^{\dagger} \phi_{3}\right) \\
& +\lambda_{5}\left(\phi_{1}^{\dagger} \phi_{3}\right)\left(\phi_{2}^{\dagger} \phi_{4}\right)+\lambda_{6}\left(\phi_{4}^{\dagger} \phi_{1}\right)\left(\phi_{3}^{\dagger} \phi_{2}\right)+h . c . \\
V_{0}= & \sum_{i=1}^{4}\left[m_{i i}^{2}\left(\phi_{i}^{\dagger} \phi_{i}\right)+\Lambda_{i i}\left(\phi_{i}^{\dagger} \phi_{i}\right)^{2}\right]+\sum_{i<j}\left[\Lambda_{i j}\left(\phi_{i}^{\dagger} \phi_{i}\right)\left(\phi_{j}^{\dagger} \phi_{j}\right)+\tilde{\Lambda}_{i j}\left(\phi_{i}^{\dagger} \phi_{j}\right)\left(\phi_{j}^{\dagger} \phi_{i}\right)\right] \\
a= & \eta \cdot \operatorname{diag}\left(\eta, \eta^{2}, \eta^{3}, 1\right)=\operatorname{diag}\left(\eta^{2}, \eta^{-2}, \eta^{-1}, \eta\right), \quad \eta \equiv e^{2 \pi i / 5}, \quad \eta^{5}=1
\end{aligned}
$$

$$
\begin{gathered}
b^{-1} a b=a^{2} \Leftrightarrow a b=b a^{2} \\
a=\operatorname{diag}\left(\eta^{2}, \eta^{-2}, \eta^{-1}, \eta\right), \quad \eta \equiv e^{2 \pi i / 5}, \quad \eta^{5}=1 .
\end{gathered}
$$

$\longrightarrow b=\left(\begin{array}{cccc}0 & 0 & 0 & b_{14} \\ 0 & 0 & b_{23} & 0 \\ b_{31} & 0 & 0 & 0 \\ 0 & b_{42} & 0 & 0\end{array}\right) \xrightarrow{\text { Absorb in } \phi_{i}} b=i^{1 / 2} \cdot\left(\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$
$G A(1,5) \simeq\left\langle a, b \mid a^{5}=b^{4}=e, b^{-1} a b=a^{2}\right\rangle$

$$
\begin{aligned}
V^{\prime}\left(\mathbb{Z}_{5}\right) & =\lambda_{1}\left(\phi_{2}^{\dagger} \phi_{1}\right)\left(\phi_{4}^{\dagger} \phi_{1}\right)+\lambda_{2}\left(\phi_{3}^{\dagger} \phi_{4}\right)\left(\phi_{2}^{\dagger} \phi_{4}\right)+\lambda_{3}\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(\phi_{3}^{\dagger} \phi_{2}\right)+\lambda_{4}\left(\phi_{4}^{\dagger} \phi_{3}\right)\left(\phi_{1}^{\dagger} \phi_{3}\right) \\
& +\lambda_{5}\left(\phi_{1}^{\dagger} \phi_{3}\right)\left(\phi_{2}^{\dagger} \phi_{4}\right)+\lambda_{6}\left(\phi_{4}^{\dagger} \phi_{1}\right)\left(\phi_{3}^{\dagger} \phi_{2}\right)+h . c .
\end{aligned}
$$

Invariance under

- 10 real free parameters
- $\lambda, \lambda^{\prime}$ can be complex
$V^{\prime}(G A(1,5))=\lambda\left[\left(\phi_{2}^{\dagger} \phi_{1}\right)\left(\phi_{4}^{\dagger} \phi_{1}\right)+\left(\phi_{3}^{\dagger} \phi_{4}\right)\left(\phi_{2}^{\dagger} \phi_{4}\right)+\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(\phi_{3}^{\dagger} \phi_{2}\right)+\left(\phi_{4}^{\dagger} \phi_{3}\right)\left(\phi_{1}^{\dagger} \phi_{3}\right)\right]$

$$
+\lambda^{\prime}\left[\left(\phi_{1}^{\dagger} \phi_{3}\right)\left(\phi_{2}^{\dagger} \phi_{4}\right)+\left(\phi_{4}^{\dagger} \phi_{1}\right)\left(\phi_{3}^{\dagger} \phi_{2}\right)\right]+\text { h.c. }
$$

$$
b=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \quad \begin{aligned}
& \phi_{1} \longleftrightarrow \phi_{2} \\
& \phi_{4} \longleftrightarrow
\end{aligned} \phi_{3}
$$

- 18 real free parameters
- λ_{i} can be complex

$$
D_{5} \simeq\left\langle a, b \mid a^{5}=b^{2}=e, b^{-1} a b=a^{4}\right\rangle
$$

Subgroup of GA(1,5)

$$
\begin{aligned}
V^{\prime}\left(D_{5}\right) & =\lambda_{1}\left[\left(\phi_{2}^{\dagger} \phi_{1}\right)\left(\phi_{4}^{\dagger} \phi_{1}\right)+\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(\phi_{3}^{\dagger} \phi_{2}\right)\right]+\lambda_{2}\left[\left(\phi_{3}^{\dagger} \phi_{4}\right)\left(\phi_{2}^{\dagger} \phi_{4}\right)+\left(\phi_{4}^{\dagger} \phi_{3}\right)\left(\phi_{1}^{\dagger} \phi_{3}\right)\right] \\
& +\lambda_{5}\left(\phi_{1}^{\dagger} \phi_{3}\right)\left(\phi_{2}^{\dagger} \phi_{4}\right)+\lambda_{6}\left(\phi_{4}^{\dagger} \phi_{1}\right)\left(\phi_{3}^{\dagger} \phi_{2}\right)+h . c .
\end{aligned}
$$

1. Some model can't be extended: Z_{8}
2. CP conservation: T_{7}
3. Many choices of Z_{6}, Z_{4} models
4. Some model Z_{4},has different extensions: D_{4}, Q_{4}--- appendix B
5. Novel case: $G A(1,5)$

A	extension	$G \quad\|G\|$	irreps
\mathbb{Z}_{2}	-	- -	-
\mathbb{Z}_{3}	$\mathbb{Z}_{3} \rtimes \mathbb{Z}_{2}$	S_{3}	$1+1+2$
\mathbb{Z}_{4}	$\begin{aligned} & \mathbb{Z}_{4} \rtimes \mathbb{Z}_{2} \\ & \mathbb{Z}_{4} \cdot \mathbb{Z}_{2}{ }^{4} \end{aligned}$	$\begin{array}{ll} D_{4} & 8 \\ Q_{4} & 8 \end{array}$	$\begin{gathered} 1+1+2 \text { or } 2+2 \\ 1+1+2 \end{gathered}$
\mathbb{Z}_{5}	$\begin{aligned} & \mathbb{Z}_{5} \rtimes \mathbb{Z}_{4} \\ & \mathbb{Z}_{5} \rtimes \mathbb{Z}_{2} \end{aligned}$	$\begin{array}{cc} G A(1,5) & 50 \\ D_{5} & 10 \end{array}$	$\begin{gathered} 4 \\ 2+2 \end{gathered}$
$\mathbb{Z}_{6} 3$	$\mathbb{Z}_{6} \rtimes \mathbb{Z}_{2}$	$D_{6} \quad 12$	$1+1+2$ or $2+2$
\mathbb{Z}_{7}	$\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}$	$T_{7} 221$	$1+3$
\mathbb{Z}_{8}	-1	-	-

$$
\mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{4} \times \mathbb{Z}_{4}
$$

- 1: $\operatorname{Aut}\left(Z_{n}\right)$ is abelian but $\operatorname{Aut}\left(Z_{n} \times Z_{m} \times \cdots\right)$ isn't
- 2: Choices of a, a^{\prime} is not unique......
- 3: $Z_{n} \times \cdots$ generated by $a, a^{\prime} \ldots, \Rightarrow$ system of equations
- 4: the automorphism group is huge:
- $\left|\operatorname{Aut}\left(Z_{2} \times Z_{2} \times Z_{2}\right)\right|=\left|G L\left(3, F_{2}\right)\right|=168,179$ subgroups, 12 conjugacy classes
- $\left|\operatorname{Aut}\left(Z_{4} \times Z_{4}\right)\right|=\left|G L\left(2, Z_{4}\right)\right|=96,234$ subgroups, 62 conjugacy classes

A	extensions	G	$\|G\|$
	$A \rtimes \mathbb{Z}_{2}$	D_{4}	8
$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$A \rtimes \mathbb{Z}_{3}$	A_{4}	12
	$A \rtimes S_{3}$	S_{4}	24
	$A \rtimes \mathbb{Z}_{2}$	SmallGroup $(16,3)$	16
	$A \rtimes \mathbb{Z}_{2} \boxed{1}$	$\mathbb{Z}_{2} \times D_{4}$	16
$\mathbb{Z}_{4} \times \mathbb{Z}_{2}$	$A . \mathbb{Z}_{2}$	$\mathbb{Z}_{4} \rtimes \mathbb{Z}_{4}$	16
	$A \rtimes \mathbb{Z}_{4}$	Faithful $E_{8} \rtimes \mathbb{Z}_{4}$	32
	$A \rtimes\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$	$\mathbf{2}_{+}^{\mathbf{5}}$	32

$\left(\mathbb{Z}_{2}\right)^{3}$		$A \rtimes \mathbb{Z}_{2}$	$\mathbb{Z}_{2} \times D_{4}$	16
		A. \mathbb{Z}_{2}	SmallGroup (16,3)	16
		$A \rtimes \mathbb{Z}_{3}$	$\mathbb{Z}_{2} \times A_{4}$	24
		$A \rtimes \mathbb{Z}_{4}$	Faithful $E_{8} \rtimes \mathbb{Z}_{4}$	32
	$A \rtimes\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$		2_{+}^{5}	32
	$A \rtimes S_{3}$		$\mathbb{Z}_{2} \times S_{4}$	48
$\mathbb{Z}_{4} \times \mathbb{Z}_{4}$		$A \rtimes \mathbb{Z}_{2}$	$\Sigma(32)$	32
		$A \rtimes \mathbb{Z}_{4}$	SmallGroup $(64,34)$	64
		$A \rtimes \mathbb{Z}_{6}$	SmallGroup (96,72)	96

- 1. split extensions may be different
- 2. trend: bigger A have richer extensions
- 3. trend: but too big G may lead to continuous symmetry
- Classification is complete using this method: extension from abelian \boldsymbol{A}
- https://github.com/JiazhenShao/4HDM-Toolbox.git

Check all case by brute force using computer

- Proof: relies on the solvability of groups, works for 3HDM. (think of numbers)
- 4HDM discrete symmetry groups: solvability not proven
- discrete subgroups of $S U(4)$ is classified. [arXiv:hep-th/9905212v2]
- 4-D representation \Rightarrow full classification of discrete symmetry of 4HDM !

－Me： $4^{\text {th }}$ year undergraduate．Seeking graduate supervisors．
－Really welcome to discuss if we share interests

[A1] The list of automorphism groups

A	$\operatorname{Aut}(A)$		A	$\operatorname{Aut}(A)$
	\mathbb{Z}_{2}		$\{e\}$	
$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	S_{3}			
\mathbb{Z}_{4}	\mathbb{Z}_{2}		$\mathbb{Z}_{2} \times \mathbb{Z}_{4}$	D_{4}
\mathbb{Z}_{5}		$\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$S L(3,2) \simeq P S L(2,7)$	
\mathbb{Z}_{6}	\mathbb{Z}_{2}		$\mathbb{Z}_{4} \times \mathbb{Z}_{4}$	$G L(2, \mathbb{Z} / 4 \mathbb{Z})$
\mathbb{Z}_{7}	\mathbb{Z}_{6}			
\mathbb{Z}_{8}	$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$			

Table 1: The list of all finite abelian symmetry groups A of the 4 HDM scalar sector and their automorphism groups $\operatorname{Aut}(A)$.

Option 1:
Split extension

$$
D_{4} \simeq\left\langle a, b \mid a^{4}=e, b^{2}=e, b^{-1} a b=a^{3}\right\rangle
$$

- 13 real free parameters in $V^{\prime}\left(D_{4}\right)$
- D_{4} have a copy of $Z_{2}=\langle b\rangle$

Option 2:
Non-split

$$
Q_{4} \simeq\left\langle a, b \mid a^{4}=e, b^{2}=a^{2}, b^{-1} a b=a^{3}\right\rangle
$$

- 9 real free parameters in $V^{\prime}\left(Q_{4}\right)$--- less but not too few
- Q_{4} don't have a copy of $Z_{2}=\langle b\rangle$

$$
\begin{aligned}
V_{1}\left(\mathbb{Z}_{4}\right) & =\lambda_{1}\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(\phi_{1}^{\dagger} \phi_{4}\right)+\lambda_{2}\left(\phi_{2}^{\dagger} \phi_{1}\right)\left(\phi_{2}^{\dagger} \phi_{3}\right)+\lambda_{3}\left(\phi_{1}^{\dagger} \phi_{3}\right)^{2} \\
& +\lambda_{4}\left(\phi_{4}^{\dagger} \phi_{1}\right)\left(\phi_{4}^{\dagger} \phi_{3}\right)+\lambda_{5}\left(\phi_{3}^{\dagger} \phi_{2}\right)\left(\phi_{3}^{\dagger} \phi_{4}\right)+\lambda_{6}\left(\phi_{2}^{\dagger} \phi_{4}\right)^{2} \\
& +\lambda_{7}\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(\phi_{4}^{\dagger} \phi_{3}\right)+\lambda_{8}\left(\phi_{1}^{\dagger} \phi_{3}\right)\left(\phi_{4}^{\dagger} \phi_{2}\right)+\lambda_{9}\left(\phi_{1}^{\dagger} \phi_{3}\right)\left(\phi_{2}^{\dagger} \phi_{4}\right)+\lambda_{10}\left(\phi_{1}^{\dagger} \phi_{4}\right)\left(\phi_{2}^{\dagger} \phi_{3}\right)+h . c .
\end{aligned}
$$

$$
b=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

$$
b^{\prime \prime}=i^{c}\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & -i \sigma & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & i
\end{array}\right)
$$

$\lambda_{1}=\lambda_{2}, \quad \lambda_{3}=\lambda_{6}, \quad \lambda_{4}=\lambda_{5}, \quad \lambda_{7}, \lambda_{8} \in \mathbb{R}$.
$\lambda_{5}=\sigma \lambda_{1}, \quad \lambda_{10}=\sigma \lambda_{7}^{*}, \quad \lambda_{9}=\sigma \lambda_{8}^{*}, \quad \lambda_{3} \in \mathbb{R}$

［C1］Why tolerate i^{r} factor？more detailed reasoning

Most general $G L(4, C)$

Overall $U(1)$ invariance automatically satisfied

$$
\begin{gathered}
\begin{array}{l}
\text { Projective } U(4) / U(1) \simeq \\
P S U(4)
\end{array} \\
U(4) / U(1) \simeq P S U(4) / Z_{4} \\
S S U(4) / Z(S U(4)) \simeq S U(4) / \mathbb{Z}_{4}
\end{gathered}
$$

- a is $P S U(4)$ transformation, i.e. a is $U(4)$ matrix ignoring overall $e^{i \alpha}$ difference
- $S U(4)$ easier to study, i.e. a is $S U(4)$ matrix ignoring overall $e^{i \alpha}$ difference
- Where $e^{4 i \alpha}=1, \Rightarrow e^{i \alpha}=i^{r}, r=0,1,2,3$
a is $P S U(4)$ transformation, technically represented by $S U(4)$ matrix with $i^{r}, r=1,2,3,4$ difference ignored.
- How to solve $b^{-1} a b=a^{3}$? b as $U(4)$ matrix
- Multiply on the left by b
- $\Rightarrow a b=b a^{3}$
- $V\left[\left(\phi_{i}^{\dagger} \phi_{j}\right)\right]$ don't feel overall phase shift $\mathrm{U}(4) / \mathrm{U}(1) \simeq S U(4) / Z_{4}$
- $\Rightarrow a b=b a^{3} \cdot i^{r}, r=0,1,2,3 \quad b$ as $S U(4)$ matrix
- We can write the matrix explicitly
－Automorphism group $\operatorname{Aut}\left(\mathbb{Z}_{8}\right)=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$
－Three b choices，$b^{2}=e$

－Just to check：$\quad a \mapsto a^{3} \mapsto a^{9}=a ; a^{2} \mapsto a^{6} \mapsto a^{18}=a^{2} \ldots$
－$b^{-1} a b=a^{n}, n=3,-1,5$

$$
\begin{aligned}
& b=\left(\begin{array}{cccc}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34} \\
b_{41} & b_{42} & b_{43} & b_{44}
\end{array}\right), \quad a=\eta^{1 / 4} \cdot\left(\begin{array}{cccc}
\eta & 0 & 0 & 0 \\
0 & \eta^{2} & 0 & 0 \\
0 & 0 & \eta^{4} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \eta^{1 / 4}\left(\begin{array}{cccc}
\eta b_{11} & \eta b_{12} & \eta b_{13} & \eta b_{14} \\
\eta^{2} b_{21} & \eta^{2} b_{22} & \eta^{2} b_{23} & \eta^{2} b_{b_{24}} \\
\eta^{4} b_{31} & \eta^{4} b_{32} & \eta^{4} b_{33} & \eta^{4} b_{34} \\
b_{41} & b_{42} & b_{43} & b_{44}
\end{array}\right)=\eta^{3 / 4} \eta^{2 r}\left(\begin{array}{cccc}
\eta^{3} b_{11} & \eta^{6} b_{12} & \eta^{4} b_{13} & b_{14} \\
\eta^{3} b_{21} & \eta^{6} b_{22} & \eta^{4} b_{23} & b_{24} \\
\eta^{3} b_{31} & \eta^{6} b_{32} & \eta^{4} b_{33} & b_{34} \\
\eta^{3} b_{41} & \eta^{6} b_{42} & \eta^{4} b_{43} & b_{44}
\end{array}\right)
\end{aligned}
$$

Compare term by term－－－－no $b \in P S U(4)$ solutions
\Rightarrow same goes for $n=-1,5$ ．sometimes have non－zero $b_{i j}$ ，but not enough to make b invertable
$\operatorname{Aut}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \simeq S_{3}, \quad \mathbb{Z}_{2}, \mathbb{Z}_{3} \subsetneq S_{3}$
1

$\operatorname{Aut}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \simeq S_{3}, \quad \mathbb{Z}_{2}, \mathbb{Z}_{3} \subsetneq S_{3}$

1	2	3
$\left\{\begin{array}{l}b^{-1} a_{1} b=i^{k} \cdot a_{2} \\ b^{-1} a_{2} b=i^{l} \cdot a_{1} \\ b^{2}=\ldots\end{array}\right.$	$\left\{\begin{array}{l}c^{-1} a_{1} c=i^{k} \cdot a_{2} \\ c^{-1} a_{2} c=i^{l} \cdot a_{1} a_{2} \\ c^{3}=\ldots\end{array}\right.$	$b^{-1} a_{1} b=i^{k} \cdot a_{2}$ $b^{-1} a_{2} b=i^{l} \cdot a_{1}$ $b^{2}=\ldots$ $c^{-1} a_{1}=i^{k} \cdot a_{2}$ $c^{-1} a_{2} c=i^{l} \cdot a_{1} a_{2}$ $c^{3}=\ldots$ $b^{-1} c b=\ldots$
$\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2} \simeq D_{4}$	$\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{3} \simeq A_{4}$	$\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \rtimes S_{3} \simeq S_{4}$

rephasing

abelian

$\mathbb{Z}_{4} \times \mathbb{Z}_{4} \quad a_{1}=\sqrt{i} \cdot\left(\begin{array}{cccc}i & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -i & 0 \\ 0 & 0 & 0 & 1\end{array}\right), \quad a_{2}=\sqrt{i} \cdot\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right)$

- Commute in $\operatorname{PSU}(4): a_{1} a_{2}=-i a_{2} a_{1}$
- System of equations have solutions like this: $\frac{i^{1 / 2}}{2} \cdot\left(\begin{array}{cccc}i \sqrt{i} & i \sqrt{i} & i \sqrt{i} & i \\ -i & 1 & i & -1 \\ -i \sqrt{i} & i \sqrt{i} & -i \sqrt{i} & i \sqrt{i} \\ -i & -1 & i & 1\end{array}\right)$

$$
b=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right), \quad a=\left(\begin{array}{cccc}
e^{i \theta_{1}} & 0 & 0 & 0 \\
0 & e^{i \theta_{2}} & 0 & 0 \\
0 & 0 & e^{i \theta_{3}} & 0 \\
0 & 0 & 0 & e^{i \theta_{4}}
\end{array}\right), \quad a^{\prime}=\left(\begin{array}{cccc}
e^{i \theta_{2}} & 0 & 0 & 0 \\
0 & e^{i \theta_{1}} & 0 & 0 \\
0 & 0 & e^{i \theta_{4}} & 0 \\
0 & 0 & 0 & e^{i \theta_{3}}
\end{array}\right)
$$

- To construct non-abelian groups: something "fearful"
- In group theory, construct a larger group from smaller ones: group extension
- E.g. $G=H \times K, h k=k h \Leftrightarrow k^{-1} h k=h$
- If $k^{-1} h k=h^{\prime} \in H$, is well defined
- Then $k^{-1} H k=H$
- Then $k \in \operatorname{Aut}(H), K \subseteq \operatorname{Aut}(H)$
- So, to construct larger groups starting from abelian group A : start from $\operatorname{Aut}(A)$, select its subgroup K, define $k^{-1} h k=h^{\prime}---$ an equation

