Combined EFT interpretation of ATLAS Higgs measurements

Yuhao Wang on behalf of the analysis team and ATLAS

Higgs measurement

- The <u>Nature paper</u> presents the most precise measurement of Higgs property up to now
- Simplified Template crosssection (STXS) binning gives more information than inclusive measurement, which gives stronger constraints on EFT parameter space

A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery

The ATLAS Collaboration

Higgs 2023, Beijing

SMEFT operators

• SMEFT: extension of SM by adding higherdimensional operators built upon SM fields

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d=6}} \frac{\overline{c_i}}{\Lambda^2} O_i^{(6)} + \sum_{j}^{N_{d=8}} \frac{\overline{b_j}}{\Lambda^4} O_j^{(8)} + \dots,$$
 Wilson coefficient

- Warsaw basis used: complete set of d=6 operators, assuming $\Lambda=1~\text{TeV}$
- 'Top' flavor scheme:

 $U(2)_q \times U(2)_u \times U(2)_d \times U(1)_e \times U(1)_\mu \times U(1)_\tau$

- First two generation quarks treated similarly
- All lepton generations separately
- 204 CP-even operators, 50 related to higgs measurement considered in this analysis

Wilson coefficient	Operator	Wilson coefficient	Operator
C _H	$(H^{\dagger}H)^3$	$c_{Qq}^{\scriptscriptstyle (1,1)}$	$(ar{Q}\gamma_\mu Q)(ar{q}\gamma^\mu q)$
$c_{H\square}$	$(H^\dagger H) \square (H^\dagger H)$	$c_{Oa}^{(1,8)}$	$(ar{Q}T^a\gamma_\mu Q)(ar{q}T^a\gamma^\mu q)$
c_G	$f^{abc}G^{a u}_{\mu}G^{b ho}_{ u}G^{c\mu}_{ ho}$	$c_{Oa}^{(3,1)}$	$(\bar{Q}\sigma^i\gamma_\mu Q)(\bar{q}\sigma^i\gamma^\mu q)$
c_W	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$c_{O_{a}}^{(3,8)}$	$(\bar{Q}\sigma^i T^a \gamma_\mu Q)(\bar{q}\sigma^i T^a \gamma^\mu q)$
C _{HDD}	$\begin{pmatrix} H^{\dagger}D^{\mu}H \end{pmatrix} \begin{pmatrix} H^{\dagger}D_{\mu}H \end{pmatrix}$	$c^{(3,1)}_{aa}$	$(\bar{q}\sigma^i\gamma_{\mu}q)(\bar{q}\sigma^i\gamma^{\mu}q)$
C _{HG}	$H^{\dagger}H G^{\mu\nu}_{\mu\nu} G^{\mu\nu}$	C ⁽¹⁾	$(\bar{t}\gamma_{\mu}t)(\bar{u}\gamma^{\mu}u)$
CIBU	$H^{\dagger}H W^{I} W^{I\mu\nu}$	$C_{tu}^{(8)}$	$(\bar{t}T^a\gamma_\mu t)(\bar{u}T^a\gamma^\mu u)$
C _{HW} CHWR	$H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} W^{\mu\nu}$	$C_{\star,d}^{(1)}$	$(\bar{t}\gamma_{\mu}t)(\bar{d}\gamma^{\mu}d)$
(¹⁾	$(H^{\dagger}i\overleftrightarrow{D} H)(\overline{l},\gamma^{\mu}l_{1})$	$c_{td}^{(8)}$	$(\bar{t}T^a\gamma_\mu t)(\bar{d}T^a\gamma^\mu d)$
$c_{Hl,11}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{2}\gamma^{\mu}l_{2})$	$c^{(1)}_{O''}$	$(\bar{Q}\gamma_{\mu}Q)(\bar{u}\gamma^{\mu}u)$
$C_{Hl,22}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{l}_{2}\gamma^{\mu}l_{2})$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{l}_{2}\gamma^{\mu}l_{2})$	$c^{(8)}_{O''}$	$(\bar{Q}T^a\gamma_\mu Q)(\bar{u}T^a\gamma^\mu u)$
$C_{Hl,33}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}^{I}H)(\bar{l}_{1}\tau^{I}\gamma^{\mu}l_{1})$	$c_{\alpha}^{(1)}$	$(\bar{Q}\gamma_{\mu}Q)(\bar{d}\gamma^{\mu}d)$
$c_{Hl,11}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}^{I}H)(\bar{l}_{2}\tau^{I}\gamma^{\mu}l_{2})$ $(H^{\dagger}i\overleftrightarrow{D}^{I}H)(\bar{l}_{2}\tau^{I}\gamma^{\mu}l_{2})$	$C^{(8)}_{a}$	$(\bar{O}T^a\gamma_{}O)(\bar{d}T^a\gamma^{\mu}d)$
$C_{Hl,22}$	$(H^{\dagger}i\overleftrightarrow{D}^{I}H)(\bar{l}_{2}\tau^{I}\gamma^{\mu}l_{2})$ $(H^{\dagger}i\overleftrightarrow{D}^{I}H)(\bar{l}_{2}\tau^{I}\gamma^{\mu}l_{2})$	c_{Qd}	$(\underline{a}_{1}, \underline{a}_{2})(\underline{a}_{1}, \underline{a}_{2})$
CH2,11	$(H^{\dagger}i\overleftrightarrow{D},H)(\bar{e}_{1}\gamma^{\mu}e_{1})$	c_{tq}	$(q\gamma_{\mu}q)(t\gamma^{-}t)$
$C_{He,11}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{1}\gamma^{\mu}e_{1})$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{2}\gamma^{\mu}e_{2})$	Ctq	$(q_1, \gamma_{\mu}q)(r_1, \gamma, r)$
СНе 33	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{3}\gamma^{\mu}e_{3})$	СеН,22	$(H^{\dagger}H)(l_2e_2H)$
$C_{H_{a}}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}\gamma^{\mu}q)$	СеН,33	$(H^{\dagger}H)(l_3e_3H)$
$C_{H_{c}}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}\tau^{I}\gamma^{\mu}q)$	c_{uH}	$(H'H)(\bar{q}Y_u'uH)$
нц С _{Ни}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	c_{tH}	$(H^{\dagger}H)(QHt)$
C _{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	<i>c</i> _{bH}	(H'H)(QHb)
$c_{HO}^{\scriptscriptstyle (1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{Q}\gamma^{\mu}Q)$	c_{tG}	$(ar{Q}\sigma^{\mu u}T^At)\widetilde{H}G^A_{\mu u}$
$c_{HO}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{Q}\tau^{I}\gamma^{\mu}Q)$	c_{tW}	$(\bar{Q}\sigma^{\mu\nu}t)\tau^I \widetilde{H} W^I_{\mu\nu}$
c_{Ht}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{t}\gamma^{\mu}t)$	C_{tB}	$(\bar{Q}\sigma^{\mu u}t)\bar{H}B_{\mu u}$
c _{Hb}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{b}\gamma^{\mu}b)$	$c_{ll,1221}$	$(\bar{l}_1\gamma_\mu l_2)(\bar{l}_2\gamma^\mu l_1)$

Introduction

 <u>EFT & BSM model interpretation</u> using the updated measurement of Higgs boson cross-section and decay rates

Decay channel	Analysis Production mode	\mathcal{L} [fb ⁻¹]	Reference	Binning	SMEFT	2HDM and (h)MSSM
$H ightarrow \gamma \gamma$	(ggF, VBF, WH, ZH, ttH, tH)	139	[24] [20]	STXS-1.2 differential	✓ √(subset)	1
$H \rightarrow ZZ^*$	$(ZZ^* \rightarrow 4\ell: \text{ggF, VBF, }WH + ZH, ttH + tH)$	139	[23] [19]	STXS-1.2 differential	✓ √(subset)	1
	$(ZZ^* \rightarrow \ell\ell \nu \bar{\nu} / \ell\ell q \bar{q}: ttH multileptons)$	36.1	[35]	STXS-0*		\checkmark
$H \to \tau \tau$	(ggF, VBF, WH + ZH, ttH + tH)	139	[30]	STXS-1.2	1	1
	(<i>ttH</i> multileptons)	36.1	[35]	STXS-0*		1
$H \to WW^*$	(ggF, VBF)	139	[31]	STXS-1.2	1	1
	(WH, ZH) (ttH multilentons)	36.1 36.1	[47]	STXS-0* STXS-0*		
		50.1	[33]	5172-0		v
$H \rightarrow bb$	(WH, ZH)	139	[25, 26]	STXS-1.2	1	1
	(VBF)	126	[27]	STXS-1.2	1	1
	(ttH + tH)	139	[29]	STXS-1.2	1	1
	(boosted Higgs bosons: inclusive production)	139	[28]	STXS-1.2	1	1
$H \rightarrow Z\gamma$	(inclusive production)	139	[32]	STXS-0*	1	1
$H \rightarrow \mu \mu$	(ggF + ttH + tH, VBF + WH + ZH)	139	[33]	STXS-0*	1	1

Parameterization

$$(\sigma \times B)_{\text{SMEFT}}^{i,k',H \to X} = \sigma_{\text{SMEFT}}^{i,k'} \times B_{\text{SMEFT}}^{H \to X} = \left(\sigma_{\text{SM}}^{i,k'} + \sigma_{\text{int}}^{i,k'} + \sigma_{\text{BSM}}^{i,k'} + \sigma_{\text$$

- Linear term: interference between dim-6 operators and SM (Λ^{-2})
- Quadratic term: Pure BSM term, product of two dim-6 operators (Λ^{-4})
- Thus the STXS binning can be parameterized in terms of the Wilson coefficient:

 $(1 \cdot \nabla (A^{\sigma_{ik'}} \cdot A^{\Gamma^{H \to X}}) \cdot \circ (A^{-4}))$

Linear model:

Linear model:

$$\begin{pmatrix}
\frac{1+\sum_{j} (A_{j}^{*m}+A_{j}^{*}) c_{j}+O(\Lambda^{-1})}{1+\sum_{j} A_{j}^{\Gamma^{H}} c_{j}+O(\Lambda^{-4})} \\
\frac{1+\sum_{j} (A_{j}^{\sigma_{i},k'}+A_{j}^{\Gamma^{H}\to X}) c_{j}+\sum_{j,l\geq j} (B_{jl}^{\sigma_{i},k'}+B_{jl}^{\Gamma^{H}\to X}+A_{j}^{\sigma_{i},k'}A_{l}^{\Gamma^{H}\to X}+A_{l}^{\sigma_{i},k'}A_{j}^{\Gamma^{H}\to X}) c_{j}c_{l}+O(\Lambda^{-6})}{1+\sum_{j} (A_{j}^{\Gamma^{H}}) c_{j}+\sum_{j,l\geq j} (B_{jl}^{\Gamma^{H}}) c_{j}+\sum_{j,l\geq j} (B_{jl}^{\Gamma^$$

$$\begin{aligned} \frac{\sigma_{\text{int}}^{i,k'}}{\sigma_{\text{SM}}^{i,k'}} &= \sum_{j} A_{j}^{\sigma_{i,k'}} c_{j} & \frac{\sigma_{\text{BSM}}^{i,k'}}{\sigma_{\text{SM}}^{i,k'}} &= \sum_{j,l \ge j} B_{jl}^{\sigma_{i,k'}} c_{j} c_{l} \\ \frac{\Gamma_{\text{int}}^{H \to X}}{\Gamma_{\text{SM}}^{H \to X}} &= \sum_{j} A_{j}^{\Gamma^{H \to X}} c_{j} & \frac{\Gamma_{\text{BSM}}^{H \to X}}{\Gamma_{\text{SM}}^{H \to X}} &= \sum_{j,l \ge j} B_{jl}^{\Gamma^{H \to X}} c_{j} c_{l} \\ \frac{\Gamma_{\text{int}}^{H}}{\Gamma_{\text{SM}}^{H}} &= \sum_{j} A_{j}^{\Gamma^{H}} c_{j} & \frac{\Gamma_{\text{BSM}}^{H}}{\Gamma_{\text{SM}}^{H}} &= \sum_{j,l \ge j} B_{jl}^{\Gamma^{H} \to X} c_{j} c_{l}, \\ & \text{with} \\ A_{j}^{\Gamma^{H}} &= \frac{\sum_{X} \Gamma_{\text{SM}}^{H \to X} A_{j}^{\Gamma^{H \to X}}}{\sum_{X} \Gamma_{\text{SM}}^{H \to X}} & B_{jl}^{\Gamma^{H}} &= \frac{\sum_{X} \Gamma_{\text{SM}}^{H \to X} B_{jl}^{\Gamma^{H \to X}}}{\sum_{X} \Gamma_{\text{SM}}^{H \to X}}. \end{aligned}$$

 $A_j^{\Gamma^H}$

Impact

• Simulation tools:

SMEFTsim & SMEFTatNL0

- The operators' impact on background is not simulated as they are considered to small and the backgrounds are constrained well by Control Regions
- Contribution shown in right plot:
- Linear model in filled bars
- Linear+quadratic in open bars
- ZH and tH are significantly affected by quadratic term

Sensitive directions

- It's not feasible to constrain all the Wilson coefficient at the same time due to large number of degrees of freedom and degeneracies in SMEFT impact
- \rightarrow Principle component analysis (PCA) is used to select the sensitive directions
 - The new basis is the eigenvectors of the covariance matrix

Sensitive directions

- A total of 19 directions are chosen with PCA within operators grouped according to physics meaning
- The rest flat directions are profiled to 0 when fitting

Results: Linear Model

- In general, the tightest constraints are observed for process that is suppressed in SM, but not in SMEFT
 - E.g. $c_{eH,22}$ which is constrained by $H \rightarrow \mu\mu$ measurement. $H \rightarrow \mu\mu$ have a small BR in SM (suppressed), but $c_{eH,22}$'s contribution on $\mu\mu$ width is not
- The corresponding energy scales probed $(\Lambda/\sqrt{\sigma})$ are shown in the middle panel

Results: Quadratic Model

- In general, most operators have more stringent constraints than linear models as the linear+quadratic impact is larger than linear one
- The observed bounds are usually smaller than the expected due to the two minimum shape of likelihood brought by the quadratic term

EFT based on differential measurements

- The differential distribution provides more information of the final state kinematics, thus gives additional constrain power to Wilson coefficients.
- However the trade is the production mode is inclusive
- $H \rightarrow 4l \& H \rightarrow \gamma \gamma$ differential $p_{\rm T}^H$ distribution used in fit
- c_{HG} , c_{tG} , c_{tH} included

 $ev^{[1]} = 0.999c_{HG} - 0.035c_{tG} - 0.003c_{tH},$ $ev^{[2]} = 0.035c_{HG} + 0.978c_{tG} + 0.205c_{tH},$ $ev^{[3]} = -0.005c_{HG} - 0.205c_{tG} + 0.979c_{tH}.$

-2

n

Parameter Value

-6

6

BSM interpretation

- The UV-complete models are also included in this study for interpretation
- 4 benchmarks of 2HDM and 7 benchmarks of MSSM + hMSSM
- Type I: All fermions couple to the same Higgs doublet.
- Type II: One Higgs doublet couples to up-type quarks while the other one couples to down-type quarks and charged leptons.
- Lepton-specific: One Higgs doublet couples to leptons while the other one couples to up- and down-type quarks.
- Flipped: One Higgs doublet couples to down-type quarks while the other one couples to up-type quarks and leptons.

Coupling	Type I	Type II	Lepton-specific	Flipped		
u, c, t	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$					
d, s, b	$s_{\beta-lpha} + c_{\beta-lpha}/\tan\beta$	$s_{\beta-lpha} - c_{\beta-lpha} imes \tan eta$	$s_{\beta-lpha} + c_{\beta-lpha}/\tan\beta$	$s_{\beta-lpha} - c_{\beta-lpha} imes \tan eta$		
<i>e</i> , μ, τ	$s_{\beta-lpha} + c_{\beta-lpha}/\tan\beta$	$s_{\beta-lpha} - c_{\beta-lpha} \times \tan \beta$	$s_{\beta-lpha} - c_{\beta-lpha} imes \tan eta$	$s_{\beta-lpha} + c_{\beta-lpha}/\tan\beta$		
W, Z	$S_{oldsymbol{eta}-lpha}$					
Н	$s_{\beta-\alpha}^{3} + \left(3 - 2\frac{\bar{m}^{2}}{m_{h}^{2}}\right)c_{\beta-\alpha}^{2}s_{\beta-\alpha} + 2\cot\left(2\beta\right)\left(1 - \frac{\bar{m}^{2}}{m_{h}^{2}}\right)c_{\beta-\alpha}^{3}$					

MSSM benchmark results are shown in backup

 $\cos(\beta - \alpha)$

 $\cos(\beta - \alpha)$

EFT to UV model

- EFT is seen as the low-energy approximation of high energy scale UV-complete model
- Theorists provide the translation from Wilson coefficient to several model's parameters [*Putting standard model EFT fits to work*, Sally Dawson, et al.]
- 2HDM are included to perform the matching
- Tree-level expansion near the alignment limit:

SMEFT parameters	Type I	Type II	Lepton-specific	Flipped
$\frac{v^2 c_{tH}}{\Lambda^2}$	$-Y_t c_{\beta-\alpha}/\tan\beta$	$-Y_t c_{\beta-\alpha}/\tan\beta$	$-Y_t c_{\beta-\alpha}/\tan\beta$	$-Y_t c_{\beta-\alpha}/\tan\beta$
$\frac{v^2 c_{bH}}{\Lambda^2}$	$-Y_b c_{\beta-\alpha}/\tan\beta$	$Y_b c_{\beta-\alpha} \tan \beta$	$-Y_b c_{\beta-\alpha}/\tan\beta$	$Y_b c_{\beta-\alpha} \tan \beta$
$\frac{v^2 c_{eH,22}}{\Lambda^2}$	$-Y_{\mu}c_{\beta-\alpha}/\tan\beta$	$Y_{\mu}c_{\beta-lpha}\taneta$	$Y_{\mu}c_{\beta-lpha}\taneta$	$-Y_{\mu}c_{\beta-\alpha}/\tan\beta$
$\frac{v^2 c_{eH,33}}{\Lambda^2}$	$-Y_{\tau}c_{\beta-\alpha}/\tan\beta$	$-Y_{\tau}c_{\beta-\alpha}\tan\beta$	$Y_{\tau}c_{\beta-lpha}\taneta$	$-Y_{\tau}c_{\beta-\alpha}/\tan\beta$
$\frac{v^2 c_H}{\Lambda^2}$	$c^2_{eta-lpha}M^2_A/v^2$	$c^2_{eta-lpha}M^2_A/v^2$	$c_{eta-lpha}^2 M_A^2/v^2$	$c_{eta-lpha}^2 M_A^2/v^2$

 Y_i is the Yukawa coupling, $Y_i = \frac{\sqrt{2}m_i}{v}$, $tan\beta = \frac{v_2}{v_1}$, α is the rotating angle diagonalize the mass matrix

EFT to UV model

- Type-I: The EFT approach miss the constraint from HVV couplings, which will only present at dim-8 operators
- For the other types, the petal region is missing due to the linear expansion of EFT approach
- In general, the EFT approach has weaker constraint than direct BSM interpretation, due to the missing of dim-8 operators

0.4

 $\cos(\beta - \alpha)$

0.4

 $\cos(\beta - \alpha)$

Summary

- The EFT & BSM interpretation of the ATLAS combined higgs measurements are presented
 - EFT: Warsaw basis, 'Top' flavor scheme
 - BSM: 4 2HDM benchmarks, 7 MSSM benchmarks + hMSSM in backup
- The linear and linear+quadratic model are used for the interpretation on STXS measurements
 - PCA is used to identify the sensitive direction and cut down the number of Wilson coefficients in fit
 - The results show that the quadratic term suppressed by Λ^{-4} will significantly affect the constraints
 - No significant deviation from SM is observed
- Differential measurements are also used to constrain a subset of Wilson coefficients and show comparable, less constraining power results with the STXS one
- EFT to UV-model matching is employed for the first time and show good consistency with kappa-framework results for most 2HDM benchmarks, indicating EFT is a good approximation of the High energy scale UV models

Backup

Fisher information

• The Fisher information matrix represents the contribution from measurement on the constraint of each POIs (c_i)

$$I_{c_i,meas_j} = \frac{\partial^2 L_{meas_i}}{\partial c_i^2}$$

• The fraction of contribution from given measurement is calculated as:

$$f_{meas_j} = \frac{I_{c_i,meas_j}}{\sum I_{c_i,meas_j}}$$

 In this analysis, it is calculated from the inverted covariance matrix with Asimov data

$$V_{\text{SMEFT}}^{-1} = P_{(i,k',X) \to (j)}^T V_{\text{STXS}}^{-1} P_{(i,k',X) \to (j)}.$$

- The correlation matrix of STXS×BR is obtained with Gaussian assumption
- The *P* matrix is composed of the linear term as the quadratic term is supposed to vanish when the Wilson coefficient is at 0

Quadratic Model results

hMSSM (habemus MSSM)

- A simplified MSSM model, its higgs sector also have two doublets, the coupling is same as 2HDM Type-II
- The SUSY constraint and additional assumptions will cut done the free parameters to two: $\tan \beta$ and m_A , see detail in LHC Yellow Report
 - Assuming all superparticles are too heavy to affect Higgs production and decay
 - Radiative correction to mass matrix other than (2,2) are negligible (which is not always the case in low mA region and large tanB)
- And the α is fixed (at tree level) by:

$$\alpha = \frac{1}{2}\arctan(\tan 2\beta \frac{M_A^2 + M_Z^2}{M_A^2 - M_Z^2})$$

MSSM benchmarks

- Similar to hMSSM, these benchmark models cut down the free parameters to two: m_A , tan β

due to the assumptions, considering the radiative corrections

- Baseline benchmarks [<u>1808.07542</u>]:
 - 1. M_h^{125} : heavy superparticles, resemble 2HDM
 - 2. $M_h^{125}(\tilde{\chi})$: relatively light charginos $(\tilde{\chi}^{\pm})$ and neutralinos $(\tilde{\chi}^0)$, significant higgsinogaugino mixing, weanken $H/A \rightarrow \tau\tau$
 - 3. $M_h^{125}(\tilde{\tau})$: light staus $(\tilde{\tau})$ and gaugino-like charginos and neutralinos
 - 4. $M_h^{125}(alignment)$:
- alignment without decoupling
- 5. $M_h^{125}(CPV)$: CP violation in the Higgs sector, interference effect in higgs (h2,h3) production and decay
- The sfermions mass are tied to TeV scale in these benchmarks, so the low tanB region is ruled out due to the SM-like higgs mass is much lower than measured value

MSSM benchmarks

- EFT benchmarks [1901.05933]($M_{h,EFT}^{125}, M_{h,EFT}^{125}(\tilde{\chi})$):
 - Open up the low $\tan \beta$ region by adjustable sfermion mass(M_{SUSY}), can be raised up to 100TeV
 - At low scale, where all the Higgs mass is around electroweak scale, the Higgs sector are evaluated in effective 2HDM to ensure the correct resummation of high mass sfermion loop
 - $M_{h,EFT}^{125}$: All SUSY particles are chosen to be heavy, phenomenologically viable extension of the M_h^{125} scenario
 - $M_{h,EFT}^{125}(\tilde{\chi})$: relatively light charginos $(\tilde{\chi}^{\pm})$ and neutralinos $(\tilde{\chi}^{0})$, extension of $M_{h}^{125}(\tilde{\chi})$ scenario

MSSM interpretation

Higgs 2023, Beijing

2HDM Comparison of EFT and kappa approach

Higgs 2023, Beijing