

Searches for singly- and doubly-charged Higgs bosons in ATLAS

Yanhui Ma on behalf of the ATLAS Collaboration

2023.11.29

Introduction

- ➤ A neutral scalar particle of mass ~125 GeV discovered at the LHC
 - Confirmed the predicted electroweak symmetry breaking mechanism of the Standard Model (SM)
 - Experimental results are consistent with the SM Higgs boson
- Is there only one Higgs doublet (SM) ? Various Beyond Standard Model (BSM) models predict additional Higgs bosons
 - Minimal extensions of the SM known as two-Higgs-doublet models (2HDMs) predict:

CP-even h⁰ and H⁰, CP-odd A⁰ Singly-charged H⁺ and H⁻

- The other models (such as Left-Right symmetric models, Higgs triplets, etc) predict the existence of H^{±±}
- The discovery of charged Higgs boson would be clear evidence of physics beyond the Standard Model.
- > The production and decay modes greatly depend on the mass of the charged Higgs boson

Introduction

Three mass categories are commonly used in H[±] searches:

Light mH[±] < mt – mb

Heavy mH[±] > *mt* - *mb*

Intermediate mH[±] ~= mt

3

double-resonant t

single-resonant t

non-resonant t

- Model-dependent H[±] branching ratios (BRs)
 - For light mH[±], the decay H[±]->tauv usually dominate in a type II 2HDM, with H[±]-> cs and cb become sizeable at low tanβ.
 - For heavy mH[±], the dominate decay is H[±]->tb, but the branching ratio (BR) for H[±]->tauv can reach ~15% at large tanβ.

Overview of the Run 2 searches

Light Charged Higgs	Intermedinte	Heavy Charged Higgs				
H [±] -> cb (139fb ⁻¹ , <u>arXiv.</u> 2302.11739)		H [±] ->tb (139fb ^{-1,} arXiv.202.10076)				
H± -> Wa (139fb ⁻¹ , <u>arXiv.</u> 2304.14247)		H ^{±±} /H [±] in WW/WZ final state (139fb ^{-1,} <u>arXiv.2101.11961</u>)				
		H ^{±±} -> multi-lepton (139fb ⁻¹ , arXiv.2304.14247)				
		H [±] ->WZ->IIIv (139fb-1, arXiv.2207.03925)				
		VBF H ^{±±} /->WW (139fb ⁻¹ , ATLAS-CONF-2023-023)				
<u>H[±]> tauµ (36 fb-1, arXiv.1807.07915)</u>						

H[±] -> cb

- Search for light charged Higgs (60 GeV < mH[±] < 160 GeV) produced from top decays with ttbar → WbH[±] b, using 139 fb⁻¹ data at 13 TeV
 - first time for a search in this channel within ATLAS
- Looking for lepton+jets final state (1 lepton (electron or muon), >=4 jets, >=2 b-tagged jets)
- Event categorization based on the N jets and N btagged jets
 - 2b + 1bl (light jet) region: derive data-based corrections to improve modelling of the ttbar
 - (4j, 3b), (5j, 3b) and (6j, 3b) regions: main signal regions
 - (5j, ≥4b) and (6j, ≥4b): ttbar + ≥ 1b background control regions

H^{\pm} -> cb

- > Building a neural network to separate signal from background.
 - Using only the events in the main SRs (>=4j and >=3b) for the training
 - Input variables carefully selected to maximize the analysis sensitivity

Input variables	Number of variables
$p_{\rm T}$, η , and ϕ of the first six leading jets	18
<i>b</i> -tagging score of the fourth, fifth, and sixth jets	3
Lepton $p_{\rm T}$, η , and ϕ	3
Missing transverse energy and its ϕ angle	2
Invariant mass between each of the three leading jets and the fourth jet	3
Total	29

Fit is performed across regions with >=3b-jets simultaneously

H[±] -> cb

- Observed (Expected) 95% CL upper limits on the branching fraction (B) as a function of mH[±] : range from 0.15% (0.09%) up to 0.42% (0.25%) depending on mH[±]
 - The largest excess in data is seen at mH^{\pm} = 130 GeV, corresponding to ~3 (2) σ local (global) significance

H[±]-> Wa , a->mumu

- Light scalars have been used to explain Dark Matt (DM) interactions, the excess from the center of our galaxy, are necessary for Electroweak Baryogenesis.
- ➤ They are predicted in various BSM theories, such as 2HDM+a, NMSSM, mixing with Higgs bosons, and inheriting Yukawa-like couplings to fermions → large coupling to top quarks
- $g \qquad b \qquad q \\ W \qquad q \\ H^{\pm} \qquad a \qquad \mu \\ g \qquad b \qquad \nu$
- ➢ Focus on the mass ranges 15 GeV < ma < 72 GeV and 120 GeV < mH[±] < 160 GeV.</p>
 - Actually a search for a boson but not H[±]
- Final states with 3 leptons (emumu, mumumu)
- Set upper limits on the branching ratio in the range at 95% confidence level as a function of ma
 - Excess at 27 GeV 2.4σ local independent of m(H[±])

H^{±±} -> multi-lepton

arXiv.2211.07505

- Search for pair production of doubly charged Higgs with 400 GeV < mH^{±±} < 1300 GeV using 139 fb⁻¹ data at 13 TeV
- Looking for same-charge lepton pairs in final states with two, three or four leptons (electron or muon).
- Signal regions separated by lepton multiplicities (2L, 3L, 4L)
- Main background

- Irreducible background (mainly from diboson process) -> estimated using MC simulation
- Reducible background (mainly from events with fake/non-prompt or charge misidentified leptons) -> data driven methods
- Various CRs (VRs) defined to constrain better the main background (validate the background estimation)

H^{±±} -> multi-lepton

- Fit observables: m_{II} in 2L and 3L SRs and CRs; total yields in 4L SRs and CRs
 - The binning is chosen to optimise the expected sensitivity to the signal model, while also keeping low statistical uncertainties in each bin.
 - Drell-Yan and diboson background normalizations are free to float in the fit, and the fitted normalisations are compatible with their SM predictions

- 95% CL upper limits set on σ, under the assumption of the branching ratios to each of the possible leptonic final states are equal
- No significant excess over SM prediction observed
 - H^{±±} excluded for masses below 1080 GeV, 300 GeV higher than the previous ATLAS measurement (arXiv. 1710.09748) with 36.1fb⁻¹ data

Statistically limited analysis with main sensitivity driven by 4L channel

- Different models (such as Georgi–Machacek) predict the production of H^{±±} via Vector Boson Fusion (VBF)
- Search for H^{±±}->WW (200 GeV < mH^{±±} < 3000 GeV) decay in the fully leptonic same sign WW final state (spin-off of SM WWjj production measurement)
 - Request exactly two same charge leptons (e/mu)
 - Request at least two jets with m_{jj} > 500 GeV and | ΔY_{jj} | > 2, b-tagged jet veto
- Main backgrounds
 - SM EWK and QCD WWjj, estimated from MC simulation, normalizations freely floating in the fit
 - Backgrounds with fake/non-prompt or charge misidentified leptons -> data driven methods

VBF H^{±±}

- Transverse mass (m_T) distribution, which provides good discrimination between resonant signal and non resonant background processes, is used as fit observable to extract signal.
 - 2D fit in m_T and m_{jj}

$$m_{\mathrm{T}} = \sqrt{\left(E_{\mathrm{T}}^{\ell\ell} + E_{\mathrm{T}}^{\mathrm{miss}}\right)^{2} - \left|\vec{p}_{\mathrm{T}}^{\ell\ell} + \vec{E}_{\mathrm{T}}^{\mathrm{miss}}\right|^{2}}$$

- Upper limits on the product of the cross section and branching fraction of VBF H^{±±}->WW vector are extreacted
 - The largest excess in data is seen at mH^{±±} = 450 GeV, corresponding to ~3.2 (2.5)σ local (global) significance

Summary

Presented latest results on searches for H[±] and H^{±±} at ATLAS, targeting various decay modes, final states and topologies

- > No significant deviation from the SM prediction
 - Some local (global) excess at ~3 (2)σ level observed
- > Many of the analyses statistical limited. Will profit from more Run 3 data, stay tuned!

Thanks for your attention

Back Up

• Summary of analysis regions

• NN score comparison between signal and background

Input variables For NN training	Number of variables		
$p_{\rm T}$, η , and ϕ of the first six leading jets	18		
<i>b</i> -tagging score of the fourth, fifth, and sixth jets	3		
Lepton $p_{\rm T}$, η , and ϕ	3		
Missing transverse energy and its ϕ angle	2		
Invariant mass between each of the three leading jets and the fourth jet	3		
Total	29		

L.05 0.95 0.95 0.0 0.1 0.2

0.3 0.4 0.5

0.6 0.7 0.8 0.9 1 NN score

Post-ft NN score distributions in SRs

Ranking of the nuisance parameters

• Summary of analysis regions

	Control regions			Signal regions		Validation regions				
	DYCR	DBCR2L	DBCR3L	CR4L	SR2L	SR3L	SR4L	VR2L	VR3L	VR4L
	e^+e^-	$e^{\pm}e^{\pm}$	$\ell^{\pm}\ell^{\pm}\ell^{\mp}$	$\ell^+\ell^+\ell^-\ell^-$	$e^{\pm}e^{\pm}$	$\ell^\pm\ell^\pm\ell^\mp$	$\ell^+\ell^+\ell^-\ell^-$	$e^{\pm}e^{\pm}$	$\ell^{\pm}\ell^{\pm}\ell^{\mp}$	$\ell^+\ell^+\ell^-\ell^-$
Channel		$e^{\pm}\mu^{\pm}$			$e^{\pm}\mu^{\pm}$			$e^{\pm}\mu^{\pm}$		
		$\mu^{\pm}\mu^{\pm}$			$\mu^{\pm}\mu^{\pm}$			$\mu^{\pm}\mu^{\pm}$		
Number of leptons	2	2	3	4	2	3	4	2	3	4
$m(\ell^{\pm}, \ell'^{\mp})_{\text{lead}} \text{ [GeV]}$	≥ 300	-	-	-	-	-	-	-	-	-
$m(\ell^{\pm}, \ell'^{\pm})_{\text{lead}} \text{ [GeV]}$	-	[200, 300)	≥ 300	[100, 200)	≥ 300	≥ 300	≥ 300	≥ 300	[100, 300)	[200, 300)
$p_{\rm T}(\ell^{\pm},\ell'^{\pm})_{\rm lead} [{\rm GeV}]$	-	-	-	-	≥ 300	≥ 300	-	[200, 300)	-	-
$\Delta R(\ell^{\pm}, \ell'^{\pm})_{\text{lead}}$	-	-	-	-	< 3.5	-	-	< 3.5	-	-
\overline{m} [GeV]	-	-	-	-	-	-	≥ 300	-	-	-
$E_{\rm T}^{\rm miss}$ [GeV]	-	> 30 -	-	-	-	-	-	> 30 -	-	-
$[\eta(\ell,\ell')]$	-	< 3.0 -	-	-	-	-	-	< 3.0 -	-	-
Z-veto	-	-	inverted	-	-	1	1	-	✓	-

H^{±±} -> multi-lepton

H^{±±}-> multi-lepton

• Display of a candidate $pp \rightarrow H^{++}H^{--}$ event

VBF H⁺⁺

10

1.4

1.2

0.8

0.6

0

Data / SM

À

500

1000

1500

M_T [GeV]

 Post-fit mT distributions in the different mjj bins

- Now the slides covers 4 analyses as shown below, following the suggestions from HBSM convenors, let me know if you think more results should be covered in the talk, thanks!
 - H± -> cb (<u>arXiv. 2302.11739</u>)
 - H± -> Wa , a->mumu (<u>arXiv.2304.14247</u>) (not really in search for H+ but light pseudoscalar A, I only mention it very briefly)
 - H^{±±} -> multi-lepton(<u>arXiv.2211.07505</u>)
 - VBF H^{±±} (<u>ATLAS-CONF-2023-023</u>), spin-off the VBS same sign WWjj measurement