## Probing the nature of electroweak symmetry breaking with Higgs boson pair-production at ATLAS



**IHEP Beijing** 











## KHOO Teng Jian (邱鼎坚)

# Why HH?

## Ellis, arXiv:1312.5672



### Classic 'Mexican Hat' Higgs potential

Minimum displaced from origin causes ElectroWeak Symmetry Breaking

$$V_h = \frac{\lambda v^2 h^2}{\sqrt{4}} + \frac{\lambda v h^3}{4} + \frac{\lambda}{4} h^4$$

mh











## *Ellis, arXiv:1312.5672*



**Classic 'Mexican Hat'** Higgs potential

Minimum displaced from origin causes ElectroWeak Symmetry Breaking

$$V_h = \lambda v^2 h^2 + \lambda v h^3 + \frac{\lambda}{4} h^4$$

Taylor expansion indicates trilinear and quartic self-coupling terms





Quantum corrections e.g. fermionic interactions create secondary minimum

Markkanen et al, 2018 [Front. Astron. Space Sci., 18 December 2018]

- EW vacuum is metastable, could tunnel to true vacuum
  - $\rightarrow$  modify VEV  $\propto \sqrt{m_h}$
- $\rightarrow$  incompatible with observed universe!



## *Ellis, arXiv:1312.5672*



Classic 'Mexican Hat' Higgs potential

Minimum displaced from origin causes ElectroWeak Symmetry Breaking

$$V_h = \lambda v^2 h^2 + \lambda v h^3 + \frac{\lambda}{4} h^4$$

Taylor expansion indicates trilinear and quartic self-coupling terms





Quantum corrections e.g. fermionic interactions create secondary minimum

EW vacuum is metastable, could tunnel

 $\rightarrow$  incompatible with observed universe!





























### Same/different flavour event categories







Anomalous enhancement of Higgs trilinear coupling:  $\kappa_{\lambda}$  $\Rightarrow$  unique sensitivity in HH channels

# Coupling limits



## Anomalous enhancement of HH to VV coupling: **k**<sub>2V</sub> $\Rightarrow$ unique sensitivity in VBF HH









Anomalous enhancement of HH to VV coupling: **k**<sub>2V</sub>  $\Rightarrow$  unique sensitivity in VBF HH





## Limits from $bb\ell\ell + E_T$ miss











## Limits from $bb\ell\ell + E_T$ miss





## **Cross-section limits**



## Total SM HH cross-section dominated by ggF + VBF







## **Cross-section limits**











- Heavy particle coupling (decaying) to HH

Other results:  $HH \rightarrow bb\tau\tau/bb\gamma\gamma$  vs HEFT [ATL-PHYS-PUB-2022-021] Resonant searches with additional BSM scalar (X SH) [O. Lundberg, tomorrow]

Enhancement of HH production could originate from a resonance

## • E.g. scalar particle (extended H sector, Higgs portal to dark sector)



TENG JIAN KHOO, HU BERLIN



HDBS-2023-17 -- arXiv:2311.ComingSoon 28















# Wrapping up

- Active ATLAS programme in DiHiggs searches
  - Key to deeper understanding of ElectroWeak Symmetry Breaking
- Latest searches have exclusion sensitivity at O(1 x  $\sigma_{SM}$ )
  - Advances in reconstruction, trigger, analysis strategy necessary
- Potential for major gains with a large Run 3 dataset keep pushing!







# Backups



# HH in translation

- 喜: Joy (xǐ)
- 双喜临门: Double joy arrives at the door (shūang xī lín mén)
  - Two happy events in coincidence •
- 双希: Double(di-) Higgs (shūang xī)

## • 希: Hope (xī), also used as an abbreviation for the Higgs boson (希格斯玻色子)







Anomalous enhancement of HH to VV coupling:  $\kappa_{2V}$  $\Rightarrow$  unique sensitivity in VBF HH



0.8⊨



-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

ggH vs. VBF HH categorization BDT score

0.8⊨

 $\tilde{\Box}$ 

## bbττ BDT – ggF vs VBF

### Single lepton trigger

### Lepton + $\tau_{had}$ trigger





### TENG JIAN KHOO, HU BERLIN



![](_page_36_Figure_3.jpeg)

![](_page_37_Picture_1.jpeg)

## $bb\tau\tau$ kinematic variables

Table 2: Input variables for the categorisation BDTs in each of the three SRs. The superscripts *a* and *c* specify the selection of jets that are taken into account for the calculation in addition to the two  $\tau$ -lepton candidates and  $\vec{p}_T^{\text{miss}}$ . For variables with a *c*, only the four-momenta of central jets, i.e. jets with  $|\eta| < 2.5$ , are included, while an *a* indicates that all available jets are included.

| Variable                          | $	au_{ m had}	au_{ m had}$ | $	au_{ m lep}	au_{ m had}~ m SLT$ | $	au_{ m lep}	au_{ m had}\  m LTT$ |
|-----------------------------------|----------------------------|-----------------------------------|------------------------------------|
| $m_{jj}^{ m VBF}$                 | 1                          | ✓                                 | ✓                                  |
| $\Delta \eta_{jj}^{ m VBF}$       | 1                          | ✓                                 | ✓                                  |
| <b>VBF</b> $\eta_0 \times \eta_1$ | ✓                          | ✓                                 |                                    |
| $\Delta \phi_{jj}^{ m VBF}$       | ✓                          |                                   |                                    |
| $\Delta R_{jj}^{ m VBF}$          |                            | ✓                                 | ✓                                  |
| $\Delta R_{\tau\tau}$             | ✓                          |                                   |                                    |
| $m_{HH}$                          | ✓                          |                                   |                                    |
| $f_2^a$                           | 1                          |                                   |                                    |
| $C^{a}$                           |                            | ✓                                 | ✓                                  |
| $m^a_{ m Eff}$                    |                            | ✓                                 | ✓                                  |
| $f_0^c$                           |                            | ✓                                 |                                    |
| $f_0^a$                           |                            |                                   | ✓                                  |
| $h_3^a$                           |                            |                                   | ✓                                  |

![](_page_37_Picture_6.jpeg)

![](_page_38_Figure_1.jpeg)

![](_page_39_Picture_1.jpeg)

## $bb\ell\ell + E_T^{miss}$ uncertainties

|   | Uncertainty in region                | Z+HF-CR (VBF)    | Z+HF-CR (ggF)   | Wt-CR (VBF)   | Wt-CR (ggF)  | tī-CR (VBF)   | tī-CR (ggF)       |
|---|--------------------------------------|------------------|-----------------|---------------|--------------|---------------|-------------------|
|   | Total Standard Model expectation     | 7320             | 88600           | 900           | 4940         | 39600         | 404000            |
|   | Total statistical $(\sqrt{N_{exp}})$ | ±90              | ±300            | ±30           | ±70          | ±200          | $\pm 600$         |
|   | Total Standard Model systematic      | +130<br>-150     | $\pm 900$       | +31<br>-35    | +90<br>-100  | +800<br>-1100 | +9000<br>-10000   |
| 5 | Background normalization             | +180<br>-230     | +1200<br>-1600  | ±60           | +180<br>-220 | +400<br>-1300 | +3500<br>-13000   |
|   | Background theory                    | +150<br>-50      | +1300<br>-500   | +50<br>-40    | +170<br>-110 | +1200<br>-310 | +12000<br>-3300   |
|   | Experimental                         | +180<br>-170     | +1200<br>-1100  | $\pm 28$      | ±110         | +130<br>-120  | +400<br>-500      |
|   | Fake extraction                      | ±1.9             | ±16             | $\pm 2.1$     | ±9           | ±21           | $\pm 180$         |
|   | Signal normalization                 | +0.05<br>-0.06   | +0.32<br>-0.35  | $\pm 0.0016$  | $\pm 0.008$  | $\pm 0.005$   | +0.034<br>-0.04   |
|   | Signal theory                        | +0.004<br>-0.014 | +0.024<br>-0.08 | $\pm 0.00013$ | $\pm 0.0006$ | $\pm 0.0004$  | +0.0026<br>-0.009 |
|   | Template statistics                  | $\pm 0$          | $\pm 0$         | +15<br>-15    | $\pm 0$      | $\pm 0$       | $\pm 0$           |

| - | Uncertainty in region                | ggF-SR 7     | ggF-SR 6     | ggF-SR 5     | ggF-SR 4         | ggF-SR 3     | ggF-SR 2         |
|---|--------------------------------------|--------------|--------------|--------------|------------------|--------------|------------------|
| - | Total Standard Model expectation     | 550          | 363          | 209          | 123              | 60           | 39               |
| - | Total statistical $(\sqrt{N_{exp}})$ | ±23          | ±19          | ±14          | ±11              | $\pm 8$      | ±6               |
|   | Total Standard Model systematic      | +28<br>-29   | +19<br>-18   | +13<br>-14   | +10<br>-12       | ±6           | $\pm 5$          |
| - | Background normalization             | +6<br>-11    | +5<br>-8     | +3.5         | +2.6<br>-3.2     | +1.5<br>-1.8 | +1.1<br>-1.3     |
| 5 | Background theory                    | +40<br>-35   | +32<br>-27   | ±21          | +19<br>-20       | ±11          | ±7               |
| 2 | Experimental                         | +40<br>-33   | +27<br>-19   | +13<br>-17   | ±9               | +5<br>-6     | $\pm 4$          |
|   | Fake extraction                      | ±0.7         | ±0.5         | $\pm 0.4$    | ±0.29            | ±0.11        | ±0.11            |
|   | Signal normalization                 | +5<br>-6     | ±6           | $\pm 6$      | ±7               | $\pm 6$      | $\pm 6$          |
|   | Signal theory                        | +0.4<br>-1.3 | +0.4<br>-1.5 | +0.5<br>-1.5 | $^{+0.5}_{-1.8}$ | +0.5<br>-1.5 | $^{+0.4}_{-1.5}$ |
|   | Template statistics                  | ±11          | ±10          | $\pm 8$      | ±5               | +4<br>-4     | +4<br>-3.5       |
|   |                                      |              |              |              |                  |              |                  |

| ggF-SR 1         |
|------------------|
| 15               |
| ±4               |
| $\pm 4$          |
| +0.5 -0.6        |
| ±6 🥇             |
| ±1.8             |
| $\pm 0.29$       |
| +7<br>-8         |
| $^{+0.6}_{-1.9}$ |
| +2.3<br>-2.1     |
|                  |

### Dominated in all regions by background & experimental systematics

|   | Uncertainty in region                | VBF-SR 5     | VBF-SR 4     | VBF-SR 3     | VBF-SR 2       | VI |
|---|--------------------------------------|--------------|--------------|--------------|----------------|----|
| - | Total Standard Model expectation     | 3430         | 920          | 123          | 8.8            |    |
|   | Total statistical $(\sqrt{N_{exp}})$ | ±60          | ±30          | ±11          | ±3.0           |    |
|   | Total Standard Model systematic      | ±120         | +40<br>-50   | +11<br>-13   | ±1.7           |    |
| ( | Background normalization             | +40<br>-100  | +11<br>-26   | +2.3<br>-3.3 | +0.20<br>-0.24 |    |
| < | Background theory                    | +230<br>-170 | +90<br>-80   | +18<br>-15   | +0.9 -1.0      |    |
| ( | Experimental                         | +170<br>-190 | +70<br>-80   | +16<br>-18   | ±1.4           |    |
|   | Fake extraction                      | $\pm 2.4$    | ±0.7         | $\pm 0.08$   | $\pm 0.04$     |    |
|   | Signal normalization                 | +3.1<br>-3.4 | +2.9<br>-3.2 | +1.8<br>-1.9 | +0.6 -0.7      |    |
|   | Signal theory                        | $\pm 0.07$   | ±0.06        | $\pm 0.04$   | $\pm 0.014$    | Ŧ  |
|   | Template statistics                  | $\pm 0$      | ±10          | ±5           | +1.5 -1.3      |    |
|   |                                      |              |              |              |                |    |

![](_page_39_Figure_9.jpeg)

![](_page_40_Picture_1.jpeg)

## bbeen the bound of the bound of the been services and the been ser

| Input feature                                        | Description                                                                                              |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| same flavour                                         | unity if final state leptons are <i>ee</i> or $\mu\mu$ , zero otherwise                                  |
| $p_{\mathrm{T}}^{\ell}, p_{\mathrm{T}}^{b}$          | transverse momenta of the leptons, <i>b</i> -tagged jets                                                 |
| $m_{\ell\ell}, p_{\rm T}^{\ell\ell}$                 | invariant mass and the transverse momentum of the di-lepton system                                       |
| $m_{bb}, p_{\rm T}^{bb}$                             | invariant mass and the transverse momentum of the b-tagged jet pair syste                                |
| $m_{\mathrm{T2}}^{bb}$                               | stransverse mass of the two <i>b</i> -tagged jets                                                        |
| $\Delta \tilde{R}_{\ell\ell}, \Delta R_{bb}$         | $\Delta R$ between the two leptons and two <i>b</i> -tagged jets                                         |
| $m_{b\ell}$                                          | $\min\{\max(m_{b_0\ell_0}, m_{b_1\ell_1}), \max(m_{b_0\ell_1}, m_{b_1\ell_0})\}\$                        |
| $\min \Delta R_{b\ell}$                              | minimum $\Delta R$ of all <i>b</i> -tagged jet and lepton combinations                                   |
| $m_{bb\ell\ell}$                                     | invariant mass of the $bb\ell\ell$ system                                                                |
| $E_{\rm T}^{\rm miss}$ , $E_{\rm T}^{\rm miss}$ -sig | missing transverse energy and its significance                                                           |
| $m_{\rm T}(\ell_0, E_{\rm T}^{\rm miss})$            | transverse mass of the $p_{\rm T}$ -leading lepton with respect to $E_{\rm T}^{\rm miss}$                |
| $\min m_{\mathrm{T},\ell}$                           | minimum value of $m_{\rm T}(\ell_0, E_{\rm T}^{\rm miss})$ and $m_{\rm T}(\ell_1, E_{\rm T}^{\rm miss})$ |
| $H_{\mathrm{T2}}^{\mathrm{R}}$                       | measure for boostedness <sup>1</sup> of the two Higgs bosons                                             |

![](_page_40_Picture_4.jpeg)

### Input feature

### $\begin{array}{c} \eta_{\ell_{0}}, \eta_{\ell_{1}}, \phi_{\ell_{0}}, \phi_{\ell_{1}}, p_{T}^{\ell_{0}}, p_{T}^{\ell_{1}} \\ \eta_{b_{0}}, \eta_{b_{1}}, \phi_{b_{0}}, \phi_{b_{1}}, p_{T}^{b_{0}}, p_{T}^{b_{1}} \\ \eta_{j_{0}}, \eta_{j_{1}}, \phi_{j_{0}}, \phi_{j_{1}}, p_{T}^{j_{0}}, p_{T}^{j_{1}} \\ E_{T}^{\text{miss}}, \phi^{E_{T}^{\text{miss}}}, E_{T}^{\text{miss}} \text{-sig} \\ p_{T}^{bb}, \Delta R_{bb}, \Delta \phi_{bb}, m_{bb} \\ p_{T}^{\ell\ell}, \Delta R_{\ell\ell}, \Delta \phi_{\ell\ell}, m_{\ell\ell}, \phi_{\text{centrality}}^{\ell\ell} \\ p_{D}^{bb\ell\ell} \end{array}$ $p_{\mathrm{T}}^{bb\ell\ell}, m_{bb\ell\ell}$ T, $m_{bb\ell\ell+E_T^{miss}}$ , $m_{bb\ell\ell+E_T^{miss}}$ $m_{\ell\ell+E_{\mathrm{T}}^{\mathrm{miss}}}$ , $\Delta \phi_{E_{\mathrm{T}}^{\mathrm{miss}},\ell\ell}$ $p_{\mathrm{T}}^{\mathrm{tot}}$ $m_{\rm tot}$ $m_t^{\rm KLF}$ $\min \Delta R_{\ell_0 j}, \min \Delta R_{\ell_1 j}$ $\sum m_{\ell j}$ $\max p_{\mathrm{T}}^{jj}, \max m_{jj}$ $\max \Delta \eta_{ii}, \max \Delta \phi_{ii}$ $\min \Delta R_{b\ell}$ $N_{\text{forward jets}}, N_j$ $m_{\mathrm{T2}}^{bb}$ $m_{\rm coll}$ $m_{\rm MMC}$

### Description

 $\eta, \phi, p_{\rm T}$  of the  $p_{\rm T}$ -(sub)leading lepton  $\eta$ ,  $\phi$ ,  $p_{\rm T}$  of the  $p_{\rm T}$ -(sub)leading *b*-tagged jet  $\phi$ ,  $\eta$ ,  $p_{\rm T}$  of the  $p_{\rm T}$ -(sub)leading non *b*-tagged jet missing transverse energy, its  $\phi$  and significance  $p_{\rm T}, \Delta R, \Delta \phi$  and invariant mass of di-*b*-jet system  $p_{\rm T}, \Delta R, \Delta \phi, p_{\rm T}$  and centrality<sup>1</sup> of di-leptons system  $p_{\rm T}$  and invariant mass of the  $bb\ell\ell$  system  $p_{\rm T}$  and invariant mass of  $bb\ell\ell + E_{\rm T}^{\rm miss}$  system invariant mass of di-lepton +  $E_{\rm T}^{\rm miss}$  system  $p_{\rm T}$  of and  $\Delta \phi$  between  $E_{\rm T}^{\rm miss}$  and di-lepton system  $p_{\rm T}$  of  $bb\ell\ell + E_{\rm T}^{\rm miss} + p_{\rm T}$ -leading and -sub-leading jet invariant mass of  $bb\ell\ell + E_T^{\text{miss}} + p_T$ -leading and -sub-leading jet Kalman fitter top-quark mass minimum  $\Delta R$  between  $p_{T}$ -(sub)leading  $\ell$ -*j* couples sum of the invariant masses of all  $\ell$ +jet combinations maximum  $p_{\rm T}$  and invariant mass of any two non *b*-tagged jets maximum  $\Delta \eta$  and  $\Delta \phi$  between any two non *b*-tagged jets minimum  $\Delta R$  of all *b*-tagged jet and lepton combinations number of forward jets, number of non *b*-tagged jets stransverse mass of the two *b*-tagged jets collinear mass (reconstruction of  $m_{\tau\tau}$ ) value of the MMC algorithm (reconstruction of  $m_{\tau\tau}$ )

![](_page_40_Picture_10.jpeg)

em

![](_page_40_Picture_12.jpeg)

![](_page_41_Picture_1.jpeg)

![](_page_41_Figure_3.jpeg)

![](_page_42_Figure_1.jpeg)

![](_page_43_Figure_1.jpeg)

![](_page_44_Figure_1.jpeg)

|                                          | Warsaw<br>operators                                                                                                                                                 | $\frac{\text{ATLAS}}{\text{STXS}}$ $c_i/\Lambda^2$ | <u>Alasfar &amp;</u><br><u>Gruber '19</u><br><i>c<sub>i</sub></i>               | $\frac{\text{SMEFiT '21}}{c_i/\Lambda^2}$         | $\frac{SMEFT@NLO}{c_i/\Lambda^2}$ |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------|
| SMEFT<br>Relevant<br>ggF HH<br>operators | $egin{array}{c} Q_{arphi} & \ Q_{arphi G} & \ Q_{u arphi} & \ Q_{u arphi} & \ Q_{arphi \Box} & \ Q_{arphi \Box} & \ Q_{arphi \Box} & \ Q_{arphi D} & \ \end{array}$ | $C_{HG}$<br>$C_{tH}$<br>$C_{tG}$<br>$C_{H,\Box}$   | $c_H/\Lambda^2$<br>$c_{HG}/\Lambda^2$<br>-<br>$c_{H,kin}$<br>$c_{HD}/\Lambda^2$ | $C_{6}$ $C_{\Phi G}$ $C_{t\Phi}$ $C_{tG}$ $C_{H}$ | cpG<br>ctG<br>cdp<br>cpDC         |

# **RosEFTa stone (HH operators)**

| SMEFT | $ \rightarrow HEF $ | <b>F</b> translation |
|-------|---------------------|----------------------|
| 1     | Alasfar I           | I HC-HH              |

|            | S                                                          | MEFT                                          |
|------------|------------------------------------------------------------|-----------------------------------------------|
| HEFT       | SILH                                                       | Warsaw                                        |
| $c_{hhh}$  | $1 + \bar{c}_6 - \frac{3}{2}\bar{c}_H$                     | $1 - 2 \frac{v^4}{m_h^2} C_H + 3 c_{H,k}$     |
| $c_t$      | $1 - rac{ar{c}_H}{2} - ar{c}_u$                           | $1 + c_{H,kin} - C_{uH} rac{v^3}{\sqrt{2}t}$ |
| $c_{tt}$   | $-\left(\frac{3}{2}\bar{c}_u + \frac{\bar{c}_H}{2}\right)$ | $-C_{uH}\frac{3v^3}{2\sqrt{2}m_t} + c_{H,k}$  |
| $c_{ggh}$  | $rac{128\pi^2}{g_2^2}ar{c}_g$                             | $rac{8\pi}{lpha_s}v^2C_{HG}$                 |
| $c_{gghh}$ | $rac{64\pi^2}{g_2^2}ar{c}_g$                              | $rac{4\pi}{lpha_s}v^2C_{HG}$                 |
|            |                                                            |                                               |

Where  $C_{H,kin} = (C_{H,\Box} - \frac{1}{4}C_{HD})$ arXiv:1008.4884 arXiv:1008.4884

From L. Pereira Sanchez45

![](_page_44_Picture_9.jpeg)

![](_page_45_Figure_1.jpeg)

## Higgs Effective Field Theory [arXiv:1212.3305, arXiv:1312.5624]

- Broader UV theories where e.g. BSM particles gain mass via EWSB (non-decoupling) [arXiv:1902.05936]
- Two Wilson coefficients ( $c_{tth}$ ,  $c_{hhh}$ ) correspond to Kappa framework ( $\kappa_t$ ,  $\kappa_\lambda$ )

Less stringent gauge (SU2) constraints on operators in H sector than SMEFT [arxiv.org:1308.2627]

ATL-PHYS-PUB-2022-0214

![](_page_45_Picture_11.jpeg)

![](_page_46_Figure_1.jpeg)

## Higgs Effective Field Theory [arXiv:1212.3305, arXiv:1312.5624]

- Broader UV theories where e.g. BSM particles gain mass via EWSB (non-decoupling) [arXiv:1902.05936]
- Two Wilson coefficients ( $c_{tth}$ ,  $c_{hhh}$ ) correspond to Kappa framework ( $\kappa_t$ ,  $\kappa_\lambda$ )

HH  $\rightarrow bb\tau\tau/bb\gamma\gamma$  vs HEFT  $\mathbf{H}$ Leeee Cggh'  $c_{ggh}$  $c_{hh}$  $\mathbf{H}$ Degegege н Η g JIIIII Η Uncorrelated with H  $c_{tth}$ cggh,tth unlike SMEFT g ullu Η H

Less stringent gauge (SU2) constraints on operators in H sector than SMEFT [arxiv.org:1308.2627]

![](_page_46_Picture_9.jpeg)

![](_page_47_Picture_1.jpeg)

# HH $\rightarrow bb\tau\tau/bb\gamma\gamma$ vs HEFT

## Constrain HH to gluon/top couplings via ggF cross-section

![](_page_47_Figure_4.jpeg)

Limits set also on m<sub>HH</sub> shape benchmarks arXiv: 1908.08923

![](_page_47_Figure_7.jpeg)

![](_page_47_Picture_8.jpeg)

![](_page_48_Picture_1.jpeg)

![](_page_48_Picture_2.jpeg)

| Benchmark model | $c_{hhh}$ | $c_{tth}$ | $c_{ggh}$ | $c_{gghh}$ | $c_{tthh}$ |
|-----------------|-----------|-----------|-----------|------------|------------|
| SM              | 1         | 1         | 0         | 0          | 0          |
| BM 1            | 3.94      | 0.94      | 1/2       | 1/3        | -1/3       |
| BM 2            | 6.84      | 0.61      | 0.0       | -1/3       | 1/3        |
| BM 3            | 2.21      | 1.05      | 1/2       | 1/2        | -1/3       |
| BM 4            | 2.79      | 0.61      | -1/2      | 1/6        | 1/3        |
| BM 5            | 3.95      | 1.17      | 1/6       | -1/2       | -1/3       |
| BM 6            | 5.68      | 0.83      | -1/2      | 1/3        | 1/3        |
| BM 7            | -0.10     | 0.94      | 1/6       | -1/6       | 1          |

![](_page_48_Figure_4.jpeg)

![](_page_48_Picture_5.jpeg)

## bbττ/bbγγ vs HEFT

HEFT benchmarks via arXiv: 1908.08923

**MHH shapes representative of Wilson coeff variations** 

See e.g. <u>CMS JHEP 03 (2021) 257</u> for SMEFT benchmarks

![](_page_48_Figure_11.jpeg)

ATL-PHYS-PUB-2022-021, arXiv:2112.11876, ATLAS-CONF-2021-03

![](_page_48_Picture_13.jpeg)