

Higgs 2023 Nov. 27–Dec. 2, IHEP Beijing Searches for exotic Higgs boson decays at CMS

Higgs

Meng Lu

30 Nov, 2023

On behalf of the CMS collaboration

Northeastern University (US)

Northeastern University, Meng Lu

Introduction

- The most important measurements on Higgs boson
 - Couplings with all SM massive particles Ο
 - Property measurements: mass, Spin, CP, Parity, Width ... Ο

Great success have been achieved in both CMS and ATLAS, good agreement with SM predictions.

Northeastern University, Meng Lu

Require Higgs Factory for the precision measurement

Introduction

$H \rightarrow Za \rightarrow 2 lep + 2 Gamma$

Motivation

- The ALP a can explain the μ g-2
- ALP couples Higgs boson

Signal setup

- Only the dominant production mode ggH is considered
- On-shell Higgs boson and Z boson, $m_{_{2}} = m_{_{H}} - m_{_{7}} \sim 30 \text{ GeV}$
- If m₂ < 1 GeV, di-photon can not be separated anymore in the detector, $m_a = [1,2,3,4,5,6,7,8,9,10,15,20,25,30]$ GeV

Dominant Bkg:

DY, estimated using data events

Event selections

- 2 eles/muons with same flavor opposite-sign charged
 - FSR photon recovered \rightarrow 1-4%
 - improvement on m_{μ} resolution
- 2 photons with pt > 10 GeV

2311.00130 sub to PLB 138 fb⁻¹ HIG-22-003

$H \rightarrow Za \rightarrow 2 lep + 2 Gamma: BDT$

One of the input variable for BDT

BDT score for m_a=30 GeV

Parametrized BDT is used to separate signal and the bkg DY.

- $(m_a m_{a_hyp})/m_{hyp}$ is the input parameter for the parametrization purpose.
 - m_a: the reconstructed mass of a, i.e., invariant mass of two photons Ο
 - m_{a_hyp} : for each signal sample, it's the mass the a in the MC model. For data and DY, it's a random number from a flat distribution of within the possible value of the search mass range Ο

Northeastern University, Meng Lu

$H \rightarrow Za \rightarrow 2 lep + 2 Gamma: shape fit$

Signal shape:

- year and ele/muon
- between 10-30 GeV

$$\mathcal{F}(m_{\ell\ell\gamma\gamma};\mu,\sigma,s,\vec{\alpha}):=\int \mathcal{N}(\mu,\sigma)(m_{\ell\ell\gamma\gamma}-t)f(t;\vec{\alpha})\Theta(s,t)\,\mathrm{d}t,$$

DY shape:

- Gaussian convoluted with the product of a falling spectrum component and a step function
- Different falling functions are studied, the difference is considered as systematics
- The fit is performed over the range $95 < m_{ll\gamma\gamma} < 180 \text{ GeV}$
- Combine all data to have more events for the fit

Fit signal MC using sum of n Gaussian functions (n < 5)For each mass point and each Parametrize the normalization for the intermediate mass point

$H \rightarrow Za \rightarrow 2 lep + 2 Gamma: results$

Limits on XS*BR.

An excess of data above the expected SM background with 2.6 (1.3) σ local (global) significance is observed for a mass hypothesis of $m_a = 3 \text{ GeV}$

Limits on Effective coupling parameter of the Higgs boson, Z boson and the scalar, Assuming decay branching fraction $B(a \rightarrow \gamma \gamma) = 100\%$

$H \rightarrow aa \rightarrow 2tau/2mu + 2b$: motivation

Motivation:

- 2HDM+S, two Higgs doubles extended with one scalar \rightarrow Seven scalar and pseudoscalar, one of them is H(125 GeV), and it can decays to a pair of pseudoscalar a1.
- FCNC condition: require only one of lacksquaredoublets can couple to fermion, then only four types of 2HDM+S.

A set of limits set on four types of 2HDM+S, under different $tan\beta$

Signal model:

- $BR(H \rightarrow a1a1)$ depends on the model type, mass of a1, and the ratio of the vev of the two doublets $tan\beta$
- Bottom plot shows cross section of different decay channel in Type-L2HDM+S.
 - $2b2\tau$ s considered due to the large cross section and lepton Ο (triggering).
 - $2b2\mu$ channel with low cross section, but provides competitive Ο results with $2b2\tau$ due to the great muon reconstruction
- ggF and VBF Higgs productions are considered
- Model NMSSMHET (a special case of Type-II 2HDM+S) is used for signal MC modeling
- 2b2*t*: 11 pseudoscalar masses in [12, 60] GeV are considered
- 2b2µ: 5 GeV step in m_{a1} for ggF, three mass points 20/40/60 GeV for **VBF** production

138 fb⁻¹ HIG-22-007

$H \rightarrow aa \rightarrow 2tau/2mu + 2b$: Selection

Event selection and category:

- For 2b2*µ*:
 - Events are selected with at least two b-jets Ο
 - M_{*uu*} ~ [14, 70] GeV Ο
 - MET < 60 GeV, to suppress tt~ Ο contribution

$$\chi_{bb} = \frac{(m_{bb} - m_{\mu\mu})}{\sigma_{bb}}, \text{ and } \chi_{H} = \frac{(m_{\mu\mu bb} - 125)}{\sigma_{H}}$$

$$\chi_{tot}^{2} = \chi_{bb}^{2} + \chi_{H}^{2}$$

For $2b2\tau$:

- Considering $e\mu$, $e\tau_{\rm h}$ and $\mu\tau_{\rm h}$ in the final Ο state.
- For each of them, events are categorized to Ο exactly 1 b-jet and >1 b-jet
- BDT is used to separate signal and bkg Ο
- Cut on BDT to suppress further the bkg, Ο then use $m_{\tau\tau}$ to extract signal significance

For $2b2\tau$, dominant bkgs are:

- $Z \rightarrow 2\tau$: estimated from data using <u>embedding technique</u>.
- <u>QCD jet mis-identified as e/mu</u> (e μ channel): evaluate the ratio of OS/SS lepton in SR using simulation, scale the SS data events with the ratio
- <u>Jet mis-identified as hadronic τ </u>: calculate the probability (f) of a jet to be identified as the $\tau_{\rm h}$, apply f/(1-f) on the sideband event
- <u>Remove double counting in ttbar events</u>, e.g., remove $e\mu$ events if no matched $e\mu$ at generator level

For $2b2\mu$, bkg is collectively estimated from data. Use polynomials+inverse for each event category.

polynomial to model the bkg

$H \rightarrow aa \rightarrow 2mu/tau + 2b$: fit and results

- For 2b2µ: unbinned fit in SR, signal shape obtained from simulation using weighted sum of a Voigt profile and a Crystal Ball functions
- For $2b2\tau$:
 - Binned fit using invariant mass of Ο two τ , m_{$\tau\tau$} (top left plot), obtained using <u>SVFit</u>.

- The brasil plot in the top right shows the 95% CL limit independent of the model type and $tan\beta$
- The 2D limits plots in the left show the exclusion phase space in Type-III and Type-IV w.r.t m_{a1} and $tan\beta$

Northeastern University, Meng Lu

$H \rightarrow aa \rightarrow 4b$

Motivation:

Study 4b channel under the context of 2HDM+S

- 4b: with largest cross section. Considering WH and ZH production with leptonic decay of $V \rightarrow$ easy to trigger those events
- mass=[12, 15, 20, 25, 30, 40, 50, 60] GeV

Selections:

- WH: one electron or one muon, requirement on MET and transverse mass m_{T}
- ZH: two electrons or two muons with opposite charge
- Both WH and ZH: at least two jets and at least two of them are tagged as B-jets

~	3b category	4b c
18	WH char	nnel
SR	(3b, 3–4j)	(41
CR	(2b, 3j)	(2
	ZH chan	nel
SR	(3b, ≥3j)	(4)
CR	(2b, 3j)	(2

<u>HIG-18-026</u> 138 fb⁻¹

category

b, 3–4j) 2b, 4j)

b, ≥4j) 2b, 4j)

Background estimation:

- tt+jet:
 - tt+light flavor (LF): shape and normalization are from simulation
 - tt+ b/c jets (HF): shape and relative rate from simulation, overall normalization from data fit Ο
- V+jet: shapes from simulation, overall normalization from data fit
- Multi-jets in WH channel: ratio method (slide 10) is used

BDT is used to separate signal and backgrounds, good agreements between data and SM predictions Left: WH channel Right: ZH channel

$H \rightarrow aa \rightarrow 4b$: results

SM cross section $\sigma(pp \rightarrow VH)$ with branching fractions $B(H \rightarrow$ aa) = 1 and $B(a \rightarrow bb) = 1$

New for Higgs2023

Observed and expected limits on the signal strength $\mu = \sigma(VH)B(H)$ \rightarrow aa \rightarrow bbbb)/ σ (VH)SM with the WH and ZH channels combined. The solid blue line indicates the

Summary

Summary:

- A search for $H \rightarrow Za \rightarrow 2 \text{ lep} + 2 \text{ Gamma is reported}$, An excess of data above the expected SM background with 2.6 (1.3) σ local (global) significance is observed for a mass hypothesis of ma = 3 GeV
- Two searches for $H \rightarrow aa \rightarrow 2tau/2mu + 2b$ and $H \rightarrow aa \rightarrow 4b$ are shown, no significant excess is observed
- Exotic decay of Higgs boson still show good agreement with the SM, looking forward to the results at 13.6TeV and the future Higgs factory to bring more clues on BSM

Thanks!

Additional materials

Northeastern University, Meng Lu

$H \rightarrow Za \rightarrow 2 lep + 2 Gamma$

Motivation

- The ALP a can explain the μ g-2
- ALP couples Higgs boson

Signal setup

- Only the dominant production mode ggH is considered
- On-shell Higgs boson and Z boson, $m_{2} = m_{H} - m_{7} \sim 30 \text{ GeV}$
- If m_a < 1 GeV, di-photon can not be separated anymore in the detector, $m_{a} = [1,2,3,4,5,6,7,8,9,10,15,20,25,30]$ GeV

Dominant Bkg:

DY, estimated using data events

Event selections

- 2 eles/muons with same flavor opposite-sign charged
 - FSR photon recovered \rightarrow 1-4% improvement on mH resolution
- 2 photons with pt > 10 GeV
- $\Delta R(lep, \gamma) > 0.4$
- mll > 50 GeV
- $95 \text{ GeV} < \text{mll}_{\gamma\gamma} < 180 \text{ GeV}$

115 GeV < mll $\gamma\gamma$ < 135 GeV \rightarrow SR

2311.00130 sub to PLB 138 fb⁻¹ HIG-22-003

$H \rightarrow Za \rightarrow 2 lep + 2 Gamma: BDT$

Parametrized BDT is used to separate signal and the bkg DY.

- $(ma ma_hyp)/mll_{\gamma\gamma}$ is the input parameter for the parametrization purpose.
 - ma: the reconstructed mass of a, i.e., invariant mass of Ο two photons
 - ma_hyp: for each signal sample, it's the mass the a in the MC model. For data and DY, it's a random number from a flat distribution of within the possible value of the search mass range
- All the other input parameters are chosen with weak correlation with $mll_{\gamma\gamma}$ the which will be used for signal extraction fit.

$$AMS = \sqrt{2\left[(S+B)\ln\left(1+\frac{S}{B}\right) - S\right]}$$

Select the BDT score cut to maximize the AMS above in the signal region, for each mass point.

- $p_{\rm T}(\gamma 1)$ and $p_{\rm T}(\gamma 2)$, where $\gamma 1$ and $\gamma 2$ are the leading and subleading photons, respectively;
- $R_9(\gamma 1)$ and $R_9(\gamma 2)$: the energy sum of the 3×3 crystal array centered around the most energetic crystal in the supercluster, divided by the energy of the supercluster;
- $\sigma_{i\eta i\eta}(\gamma 1)$ and $\sigma_{i\eta i\eta}(\gamma 2)$: the second moment of the log-weighted distribution of crystal energies in η , calculated in the 5×5 matrix around the most energetic crystal in the supercluster and rescaled to units of crystal size;
- $I_{\gamma}(\gamma 1)$ and $I_{\gamma}(\gamma 2)$: the isolation variable obtained by summing the p_{T} of photons inside an isolation cone of $\Delta R = 0.3$ with respect to the photon direction, while the impact of another selected photon is also included;
- $I_{\gamma,a}$, the isolation variable obtained by summing the p_T of photons inside an isolation cone of $\Delta R = 0.3$ with respect to the direction of the ALP candidate;
- the angular separation between the Z boson and the diphoton pair, $\Delta R(Z, a)$;
- the angular separation between the two photons, $\Delta R(\gamma_1, \gamma_2)$;
- the angular separation between the leading photon and the Z boson, $\Delta R(\gamma_1, Z)$;
- the ALP candidate's p_T divided by $m_{\ell\ell\gamma\gamma}$;
- the H boson candidate's p_T;
- the difference between the invariant masses of the ALP candidate and the m_{a,hyp} parameter divided by $m_{\ell\ell\gamma\gamma}$, $(m_{\rm a} - m_{\rm a,hyp})/m_{\ell\ell\gamma\gamma}$.

$H \rightarrow Za \rightarrow 2 lep + 2 Gamma: BDT$

Figure 2: Distributions of the four most discriminating variables used as input to the BDT: $(m_a - m_{a,hyp})/m_{\ell\ell\gamma\gamma}$ (upper left), leading photon's $\sigma_{i\eta i\eta}$ (upper right), subleading photon's $\sigma_{i\eta i\eta}$ (lower left), and leading photon's R_9 (lower right). The events pass the selection criteria described in Section 5. The signal is scaled to a cross section of 0.1 pb and the background sample is normalized to an integrated luminosity of 138 fb⁻¹. The systematic uncertainties included in the shaded band are related to the photon efficiency, lepton efficiency, and pileup modeling. The impact of the remaining disagreement between data and simulation is negligible.

Table 1: Minimum BDT output values used to define the signal region, with the associated signal efficiencies and background yields. The statistical uncertainties is also shown.

$m_{\rm a}$ (GeV)	Min. BDT	Signal efficiency	Drell–Yan	
	output value	(%)	background yields	
1	0.955	49 ± 3.3	83 ± 27	
2	0.980	67 ± 2.7	26 ± 10	
3	0.985	76 ± 2.4	7.9 ± 4.9	
4	0.980	84 ± 2.1	5.1 ± 4.5	
5	0.985	85 ± 2.1	5.1 ± 3.9	
6	0.990	82 ± 2.3	2.5 ± 2.2	
7	0.985	86 ± 2.1	5.3 ± 4.0	
8	0.990	80 ± 2.5	11 ± 4.8	
9	0.990	78 ± 2.5	16 ± 5.6	
10	0.990	77 ± 2.6	11 ± 4.7	
15	0.990	70 ± 2.9	13 ± 5.2	
20	0.990	63 ± 3.1	18 ± 6.1	
25	0.985	64 ± 2.7	37 ± 11	
30	0.980	67 ± 2.2	44 ± 13	

$$AMS = \sqrt{2\left[(S+B)\ln\left(\right.\right.\right]}$$

In Eq. (2), S and B refer to the number of signal and background (Drell-Yan simulation) events in the signal region

 $(1+\frac{S}{B})-S$

CMS

$H \rightarrow Za \rightarrow 2 lep + 2 Gamma: signal shape$

Figure 5: Product of detector efficiency and analysis acceptance for signal samples with various $m_{\rm a}$ values for the electron (left) and muon channel (right). The error bars include statistical and systematic uncertainties. The photon efficiency, lepton efficiency, and pileup modeling uncertainties are taken into account for the systematic uncertainty.

To build the signal models for the intermediate mass hypotheses in the range 10 < ma < 30 GeV, two factors must be considered: the shape of the m $\ell\ell\gamma\gamma$ distribution and its normalization. Since the shape of the m $\ell\ell\gamma\gamma$ distribution does not significantly depend on ma in the interpolation range, only the normalization of the signal model is parameterize.

For each intermediate point, a signal model is constructed using the $m\ell\ell\gamma\gamma$ shape of the nearest mass hypothesis and the normalization is interpolated from the two nearest mass hypotheses

Northeastern University, Meng Lu

$H \rightarrow Za \rightarrow 2 lep + 2 Gamma: fit$

function and the uncertainty in the fitted parameters.

Northeastern University, Meng Lu

Table 2: Sources of systematic uncertainties and their impact on the signal strength for each data-taking period.

$m_{\ell\ell\gamma\gamma}$ distribution shape	2016	2017	2018
Photon energy scale	<0.10%	<0.10%	<0.10%
Photon energy resolution	5.7%	3.5%	4.5%
Electron energy scale	<0.10%	<0.10%	<0.10%
Electron energy resolution	4.3%	4.2%	4.9%
Muon energy scale	<0.10%	<0.10%	<0.10%
Muon energy resolution	4.9%	4.4%	5.2%
Signal model normalization			
Integrated luminosity	1.2%	2.3%	2.5%
Pileup modeling	2.9%	2.9%	2.5%
Photon efficiency	10%	10%	10%
Electron efficiency	1.7%	1.5%	1.6%
Muon efficiency	0.80%	0.50%	0.50%
BDT uncertainties	<2%	<2%	<2%

$H \rightarrow aa \rightarrow 2tau/2mu + 2b$: Selection

Event selection and category:

- Events are selected with at least two b-jets
- Mμμ ~ [14, 70] GeV Ο
- MET < 60 GeV, to suppress tt~ contribution Ο

Northeastern University, Meng Lu

 $\chi^2_{\rm tot} = \chi^2_{\rm bb} + \chi^2_{\rm H}$

$H \rightarrow aa \rightarrow 2tau/2mu + 2b$

	Type-1	Type-2	Type-3 (lepton- specific)	Type- (flippe
right-handed leptons	φ1	Ф2	Φ2	φ1
up-type quarks	φ1	φ1	φ1	φ1
down-type quarks	φı	Ф2	Φ1	Ф2

Trigger requirements

n- thresholds		uubh			
<i>p</i> _T unconoido	eμ	$\mathrm{e} au_\mathrm{h}$	$\mu au_{ m h}$	μμου	
Floctron	23 (leading)	25 (2016)			
Electron	12 (subleading)	32 and 35 (2017, 2018)	_	_	
Muon	23 (leading)		22 (2016)	17 (leading)	
	8 (subleading)		24 and 27 (2017, 2018)	8 (subleading)	
$ au_{ m h}$		20 (2	.016)		
	_	27 (2012	_		

Northeastern University, Meng Lu

Events are further then categorized according to the BDT score

- 1 b-jet category: three SRs
- At least 2 b-jets category: mostly two SRs, but also only one SR due to add more SR won't increase significance

CR < 0.9
CR < 0.9
< 0.9
< 0.0
< 0.9
< 0.9
CR
< 0.9
< 0.93
< 0.9
CR
< 0.9
< 0.9
< 0.9

Variables $\sigma_{\rm bb}$ and $\sigma_{\rm H}$ are the mass resolutions of the di-b-jet system and the Higgs boson candidate, respectively. Derived from simulation, $\sigma_{\rm H}$ is found to be constant while $\sigma_{\rm bb}$ increases linearly with m_{a_1} . The latter is modeled as a function of $m_{\mu\mu}$ ($\sigma_{bb} = a \times m_{\mu\mu} + b$), assuming $m_{\mu\mu} = m_{a_1}$. The χ^2_{tot} variable is evaluated on an event-by-event basis. It was shown in the pre-

Figure 4: Signal ($m_{a_1} = 40 \text{ GeV}$) versus background efficiency for different thresholds on χ^2_{tot} (gray) and χ^2_d (red) variables. The black star indicates signal efficiency versus that of background for the optimized χ^2_d requirement.

Northeastern University, Meng Lu

Pro	Process					
To	86.3 ± 2.25					
Drell-Yan (10	$0 < m_{\ell\ell} < 50$)	289.6 ± 89.5				
Drell-Yan	200.2 ± 31.9					
Dibo	1.5 ± 0.9					
Singl	11.4 ± 1.6					
Total expected	589.05 ± 95.09					
Da	641					
Sig	Signal for ggH ($\mu\mu$ bb)					
$m_{a_1} = 20 \text{GeV}$ $m_{a_1} = 40 \text{GeV}$		$m_{a_1} = 60 \text{GeV}$				
15.4 ± 0.2 18.7 ± 0		40.5 ± 0.3				

Table 4: The expected yields for backgrounds and different signal hypotheses in each category. The entries are rounded to first decimal place.

Category		Sig	Expected background		
		$m_{a_1} = 20 \mathrm{GeV}$	$m_{a_1} = 20 \text{GeV} \mid m_{a_1} = 40 \text{GeV} \mid m_{a_1} = 60 \text{GeV}$		
	TL	2.1 ± 0.06	2.8 ± 0.07	6.7 ± 0.11	109 ± 30
	TM	2.7 ± 0.06	3.3 ± 0.07	7.7 ± 0.11	27 ± 15
8	TT	2.8 ± 0.06	4.2 ± 0.08	8.1 ± 0.1	28 ± 11
	VBF	0.2 ± 0.02	1.0 ± 0.04	1.1 ± 0.4	5 ± 2
	$Low p_T$	7.4 ± 0.11	7.3 ± 0.11	17 ± 0.17	421 ± 88
	Total	15.4 ± 0.2	18.7 ± 0.2	40.5 ± 0.3	589 ± 95

Northeastern University, Meng Lu

$H \rightarrow aa \rightarrow 2ta + 2b$: BDT inputs

$$m_{\rm T}(\ell, p_{\rm T}^{\rm miss}) \equiv \sqrt{2p_{\rm T}^\ell \cdot p_{\rm T}^{\rm miss} \left[1 - \cos(\Delta \phi)\right]},$$

where p_T^{ℓ} is the transverse momentum of the lepton and $\Delta \phi$ is the azimuthal angle between the lepton and the $\vec{p}_{T}^{\text{miss}}$. Events from tt and misidentified τ_{h} backgrounds, such as W + jets, have larger p_T^{miss} , thus result in higher m_T values. Another variable useful in the training is D_{ζ} , defined as

$$D_{\zeta} \equiv p_{\zeta} - 0.85 p_{\zeta}^{\mathrm{vis}}$$

where the bisector of the directions of the visible τ decay products transverse to the beam direction is denoted as the ζ axis. The quantity p_{ζ} is defined as the component of the p_{T}^{miss} along the ζ axis, and p_{ζ}^{vis} to be the sum of the components of the lepton transverse momentum along the same direction [55]. The Z $\rightarrow \tau \tau$ background falls in large D_{ζ} values because the $p_{\rm T}^{\rm miss}$ is approximately collinear to the $\tau\tau$ system. The tt events tend to have small D_{ζ} values due to a large p_T^{miss} that is not aligned with the $\tau \tau$ system. The signal has intermediate D_{ζ} values because the p_T^{miss} is approximately aligned with the $\tau\tau$ system, but its magnitude is small. For events in two b jets category, a variable can be constructed to measure the difference between the invariant mass of the two b jets and the invariant mass of two taus:

$$\Delta m_{\rm a_1} \equiv (m_{\rm bb} - m_{\tau\tau})/m_{\tau\tau}.$$

This variable is of particular interest since it peaks at the value 0 for signal events. The di-tau invariant mass $(m_{\tau\tau})$ distribution, reconstructed using the SVfit algorithm [56], is used as the observable for the likelihood fit, and thus is not included as an input to the DNN.

(4)

(5)

(6)

Event selection and category

- For $2b2\tau$:
 - Considering $e\mu$, $e\tau_h$ and $\mu\tau_h$ in the final state.
- For each of them, events are categorized to exactly 1 b-jet and >1 b-jet BDT is used to separate signal and bkg.
- Lepton and jet pt, pt and eta of di- τ system, invariant mass and dR of objects

Important BDT inputs:

 $m_{\rm T}(\ell, p_{\rm T}^{\rm miss}) \equiv \sqrt{2p_{\rm T}^\ell \cdot p_{\rm T}^{\rm miss} \left[1 - \cos(\Delta\phi)\right]},$

 $D_{\zeta} \equiv p_{\zeta} - 0.85 p_{\zeta}^{\rm vis}$

 $\Delta m_{\rm a_1} \equiv (m_{\rm bb} - m_{\tau\tau})/m_{\tau\tau}$

2mu+2b: bkg model

Figure 6: The best-fit background models together with 68% CL uncertainty band from the fit to the data under the background-only hypothesis for the (top left) TT category, (top right) TM, (middle left) TL category, (middle right) Low $p_{\rm T}$ category, and (bottom) VBF category.

Northeastern University, Meng Lu

60 m_{µµ}(GeV)

60 т_{µµ} (GeV)

For $2b2\tau$, dominant bkgs are:

- $Z \rightarrow 2\tau$: estimated from data using embedding technique. Replace muons with tau in the $Z \rightarrow \mu\mu$ events in the data while keeping kinematics the same, in which tau decay is modelled using simulation
- <u>QCD jet mis-identified as e/mu</u> (e μ channel): evaluate the ratio of OS/SS lepton in SR using simulation, scale the SS data events with the ratio
- <u>Jet mis-identified as hadronic τ : calculate the probability (f) of a jet to be</u> identified as the $\tau_{\rm h}$, apply f/(1-f) on the sideband event
- <u>Remove double counting in ttbar events</u>, e.g., remove eµ events if no matched eµ at generator level

For $2b2\mu$, bkg is collectively estimated from data. Use polynomials+inverse polynomial to model the bkg for each event category.

- For 2b2µ: unbinned fit in SR, signal shape obtained from simulation using weighted sum of a Voigt profile and a Crystal Ball functions
- For $2b2\tau$:
 - Binned fit using invariant mass of two τ , m_{$\tau\tau$}, obtained using <u>SVFit</u>.

Embedding technique

- p_T^H : the vector sum of the p_T of the three or four b-tagged jets forming the H boson candidate;
- $m_{\rm H}$: the invariant mass of the three or four b-tagged jets forming the H boson candidate;
- p_T^V : the vector sum of the p_T of the electron or muon and p_T^{miss} for the W candidate; the $p_{\rm T}$ of the dilepton pair for the Z boson candidate;
- $H_{\rm T}$: the sum of the scalar $p_{\rm T}$ of the transverse momenta of the three or four b-tagged jets that define the H boson candidate;
- $\langle \Delta R(b,b') \rangle$: the separation in the η - ϕ plane between any two b-tagged jets in an event, averaged over all such combinations;
- $|\Delta \phi(V, H)|$: the azimuthal angle between the directions of the W or Z boson candidate and the H boson candidate;
- $|\Delta \phi(j, p_T^{\text{miss}})|^{\text{min}}$: the smallest azimuthal angle between \vec{p}_T^{miss} and a jet;
- $p_{\rm T}^{\ell}$: for WH events, the $p_{\rm T}$ of the electron or muon; for ZH events, the $p_{\rm T}$ of the leading electron or muon;
- $p_{\rm T}^{\rm miss}$: the magnitude of the missing transverse momentum;
- *m*_T: the transverse mass defined in section 4;
- $\Delta m_{b\overline{b}}^{\min} = |m_{b\overline{b},1} m_{b\overline{b},2}|^{\min}$: the minimum difference between two dijet masses formed from all possible combinations with the three or four b-tagged jets. The four (three) b-tagged jets can be grouped in three (two) different ways to form a pair of a $\rightarrow b\overline{b}$ candidates. The $\Delta m_{b\overline{b}}^{\min}$ variable represents the grouping that results in the smallest difference between the masses of the two pseudoscalar candidates.

Table 2: Summary of systematic uncertainties for background and signal event yields in the WH channel. Uncertainties that are negligible are indicated with a dash (—).

Source	Uncertainty (%)						
Source	$t\overline{t}+b\overline{b}$	$t\overline{t}+c\overline{c}$	$t\bar{t}+LF$	W+jets	Z+jets	WH (20 GeV)	WH (60 GeV)
Lepton trigger, identification & isolation	2	2	2	2	2	2	2
Lepton energy scale				—	_	_	_
Jet energy scale	0.5	0.5	0.5	2	2	1	1
Jet energy resolution	0.5	0.5	0.5	4	5	1	0.5
Energy scale of unclustered $p_{\rm T}^{\rm miss}$	0.5	0.5	0.5	2	2	1	0.8
b quark tagging	6.0	4.0	4.0	4.5	5.0	9	8.5
c quark mistagging	1.5	6.5	3 <u></u>	4.0	2.5	0.3	0.1
Light-flavor mistagging	1.5	1.0	9.0	7.0	9.5	1	0.5
Limited MC statistical precision	1.0	0.5	0.5	4.5	4.5	1	1
Top $p_{\rm T}$ mismodeling	2.5	1.3	1.5				_
Pileup	0.2	0.8	2.5	4	4	0.5	0.5

Table 3: Summary of systematic uncertainties for background and signal event yields in the ZH channel. Uncertainties that are negligible are indicated with a dash (—).

Sourco	Uncertainty (%)					
Source	$t\bar{t}+b\bar{b}$	$t\bar{t}+c\bar{c}$	$t\bar{t}+LF$	Z+jets	ZH (20 GeV)	ZH (60 GeV)
Lepton trigger, identification & isolation	2	2	2	2	2	2
Lepton energy scale				<u> </u>	<u> </u>	
Jet energy scale	1	10	2. 	0.5	0.1	0.1
Jet energy resolution	0.1	0.1	0.1	0.1	0.1	0.1
b quark tagging	6.5	4	4	5	9	8
c quark mistagging	0.5	9		2.5	0.3	0.1
Light-flavor mistagging	1.0	2	10	6	1	0.5
Limited MC statistical precision	2.5	3	2	1.5	1	1
Pileup	1	1	4	3	0.5	0.5

Northeastern University, Meng Lu

$H \rightarrow aa \rightarrow 4b$: results

cross section $\sigma(pp \rightarrow VH)$ with branching fractions $\mathcal{B}(H \rightarrow aa) = 1$ and $\mathcal{B}(a \rightarrow b\overline{b}) = 1$.

