

Search for anomalous couplings affecting Higgs boson production and decay with the CMS experiment

Attilio Santocchia

HIGGS 2023 Beijing – 01.12.2023

Motivations

- Precision measurements of the Higgs boson properties over the last 10 years after its discovery.
 - Higgs spin-parity quantum numbers JCP=0⁺⁺ are compatible with the SM.
- Constraints on Higgs couplings measurements:
 - Current precision allows for small anomalous CP-even and/or CP-odd couplings.
 - Anomalous couplings analyses test for deviation from SM expectations.
- General strategy
 - The kinematics of particles produced in the Higgs decay or in association with H boson production are sensitive to anomalous couplings of the H boson.

Higgs anomalous couplings in the HVV vertex

Generic spin-0 HVV scattering amplitude

SM Higher-order SM loop or BSM contributions (anomalous couplings)

Approach 1

- the SM and just one anomalous HVV coupling are considered
- $a_i^{ZZ} = a_i^{WW} \rightarrow 4$ anomalous couplings individually analyzed

Approach 2

Additional $SU(2) \times U(1)$ relationship

$$\mathbf{A}(\mathbf{HV}_{1}\mathbf{V}_{2}) \sim \left[a_{1}^{\mathrm{VV}} + \frac{\kappa_{1}^{\mathrm{VV}}q_{\mathrm{V1}}^{2} + \kappa_{2}^{\mathrm{VV}}q_{\mathrm{V2}}^{2}}{\left(\Lambda_{1}^{\mathrm{VV}}\right)^{2}}\right] m_{\mathrm{V1}}^{2} \epsilon_{\mathrm{V1}}^{*} \epsilon_{\mathrm{V2}}^{*} + \frac{1}{v} a_{2}^{\mathrm{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + \frac{1}{v} a_{3}^{\mathrm{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$$

individually and simultaneously

Convenient to use effective cross section ratios rather than the anomalous couplings themselves.

$$f_{ai} = \frac{|a_i|^2 \sigma_i}{\sum_j |a_j|^2 \sigma_j} \operatorname{sign}\left(\frac{a_i}{a_1}\right)$$
$$f_{a3}^{ggH} = \frac{|a_3^{gg}|^2 \sigma_3^{gg}}{|a_2^{gg}|^2 \sigma_2^{gg} + |a_3^{gg}|^2 \sigma_3^{gg}} \operatorname{sign}\left(\frac{a_3^{gg}}{a_2^{gg}}\right)$$

Higgs anomalous couplings @ CMS

Observables and Kinematic discriminants

G Kinematic discriminants

- o the two quark jets from VBF and VH production (HVV coupling)
- o the H \rightarrow WW decay products (HVV coupling)
- o the two quark jets from ggH + 2 jets production (Hgg coupling)
- □ MELA discriminants using associated jets from VH ggH (+2jet) VBF

- In general, 5 angles fully characterize the orientation of the production and decay chain, but HWW has 2 neutrinos in the final state → no Ws four-vectors available → not all 5 angles are available
- Several discriminants (cross-section ratio) defined to extract anomalous couplings (all discriminants depend on the 5 blue angles)

Observables and Kinematic discriminants

- For a spin-0 object, only 5 variables (3 angles and 2 four-momenta of the vector bosons) describe the EW production processes
- **3** class of discriminants are defined for the production process:

$$\mathcal{D}_{sig} = \frac{\mathcal{D}_{sig}(\vec{\Omega})}{\mathcal{P}_{sig}(\vec{\Omega}) + \mathcal{P}_{bkg}(\vec{\Omega})} \rightarrow \text{ggH signal vs VBF/VH signal}$$

$$\mathcal{D}_{BSM} = \frac{\mathcal{P}_{BSM}(\vec{\Omega})}{\mathcal{P}_{BSM}(\vec{\Omega}) + \mathcal{P}_{SM}(\vec{\Omega})} \rightarrow \text{SM signal vs BSM signal}$$

$$\mathcal{D}_{int} = \frac{\mathcal{P}_{SM-BSM}^{int}(\vec{\Omega})}{\mathcal{P}_{SM}(\vec{\Omega}) + \mathcal{P}_{BSM}(\vec{\Omega})} \rightarrow \text{Interference signal vs Pure SM/BSM signal}$$

- \square Probabilities \mathcal{P}_{i} calculated with MELA and depends on the 5 variables
- Generic BSM label is generally replaced by the specific anomalous

Final discriminants categorization

Analysis	Channel	Categorization	Final discriminant
HVV Approach 1	VBF (a_3) VBF (a_2) VBF $(\kappa_1 \Lambda_1)$ VBF $(\kappa_2^{Z\gamma} \Lambda_1^{Z\gamma})$ VH (a_3)	\mathcal{D}_{CP} \mathcal{D}_{int} - \mathcal{D}_{CP}	$egin{aligned} & \mathcal{D}_{ ext{VBF}}, m_{\ell\ell}, \mathcal{D}_{0-} \ & [\mathcal{D}_{ ext{VBF}}, m_{\ell\ell}, \mathcal{D}_{0+}] \ & [\mathcal{D}_{ ext{VBF}}, m_{\ell\ell}, \mathcal{D}_{\Lambda 1}] \ & [\mathcal{D}_{ ext{VBF}}, m_{\ell\ell}, \mathcal{D}_{\Lambda 1}^{Z\gamma}] \ & [m_{\ell\ell}, \mathcal{D}_{0-}] \end{aligned}$
	VH (a_2) VH $(\kappa_1 \Lambda_1)$ VH $(\kappa_2^{Z\gamma} \Lambda_1^{Z\gamma})$ 0- & 1-jet ggH	- - -	$egin{aligned} & [m_{\ell\ell}, \mathcal{D}_{0+}] \ & [m_{\ell\ell}, \mathcal{D}_{\Lambda 1}] \ & [m_{\ell\ell}, \mathcal{D}_{\Lambda_1}^{Z\gamma}] \ & [m_{\ell\ell}, m_{\mathrm{T}}] \end{aligned}$
HVV Approach 2	VBF VH 0- & 1-jet ggH	$\mathcal{D}_{CP}, \mathcal{D}_{ ext{int}}$ \mathcal{D}_{CP}	$egin{aligned} & [\mathcal{D}_{ ext{VBF}}, m_{\ell\ell}, \mathcal{D}_{0-}, \mathcal{D}_{0+}] \ & [m_{\ell\ell}, \mathcal{D}_{0-}, \mathcal{D}_{0+}] \ & [m_{\ell\ell}, m_{ ext{T}}] \end{aligned}$
Hgg	2-jet ggH 0- & 1-jet ggH	${\cal D}_{CP}^{ m ggH}$ -	$[\mathcal{D}_{\mathrm{VBF}}, \mathcal{D}_{0-}^{\mathrm{ggH}}]$ $[m_{\ell\ell}, m_{\mathrm{T}}]$

Discriminants events distributions

multidimensional discriminants are statistically optimized

Systematic uncertainties

- Signal extraction is performed using binned templates
- Systematic uncertainties that change the normalization or shape of the templates are taken into account
- All the uncertainties are modelled as nuisance parameters that are profiled in the final maximum likelihood fit
- Main experimental uncertainties are related to luminosity, trigger efficiency, lepton and *b*-jet identification, lepton momentum and jet energy scale, E^{mis}_T scale, pile-up effect and estimation of the nonprompt background
- Main theoretical uncertainties are related to PDF choice, higher order cross section contribution, pile-up and parton shower modelling and underlying events tune.

Result: approach 1 - f_{ai} scans

Result: approach 1 - f_{ai} scans

Result: approach 2 - f_{ai} scans

BEIJING 01.12.2023

Attilio Santocchia

Coupling interpretation in the Higgs basis

Coupling interpretation in the Higgs basis

Conclusions

The Run 2 anomalous coupling analysis in the HWW channel is another step for better understanding the nature of the Higgs boson

all measurements are so far in agreement with a SM Higgs boson

Chosen final state topology is $e + \mu + E_T^{mis}$

DATA SAMPLE

- o Data recorded by CMS in 2016, 2017 and 2018
- o Total analyzed luminosity 138 fb⁻¹
- o Trigger: logic OR between the main $e\mu$ filter and single-lepton filters

SIMULATED SAMPLE

- 4 independent sets of simulated events, corresponding to the four era of data taking (2 eras in 2016 and 1 each for 2017 and 2018)
- Signal and Background processes produced with state-of-art generators (POWHEGv2, MINLO, MADGRAPH5_aMC@NLO, PYTHIA, JHUGEN, MCFM) and simulated with GEANT
- Additional pp interactions (pileup) in the simulation is adjusted to match that observed in data
- o Trigger efficiency evaluated in data and applied to simulated events

Event reconstruction

base selection

Table 2: Summary of the base selection criteria.	
Table 2: Summary of the base selection criteria	
2 leptons (e μ) of opposite charge	
$p_{\mathrm{T}}^{\ell 1} > 25\mathrm{GeV}$	
$p_{\rm T}^{\ell 2} > 13 { m GeV}$ (10 GeV in 2016)	
No additional lepton with $p_{\rm T} > 10 {\rm GeV}$	
$12 < m_{\ell\ell} < 76.2 \text{ or } m_{\ell\ell} > 106.2 \text{GeV}$	
$p_{\mathrm{T}}^{\ell\ell} > 30\mathrm{GeV}$	
$p_{\mathrm{T}}^{\mathrm{miss}} > 20 \mathrm{GeV}$	
$m_{ m T}^{\ell 2} > 30{ m GeV}$	
$60 < m_{\rm T}^{\rm H} < 125 {\rm GeV}$	
b jet veto	

.

control regions

V Variable	DYττ	top quark	WW	
Variable	ττ	top quark	WW	
$m_{\ell\ell}$	40-80 GeV	$> 50 \mathrm{GeV}$	> 106.2 GeV	
$m_{\mathrm{T}}^{\mathrm{H}}$	< 60 GeV	—	60–125 GeV	
$m_{\mathrm{T}}^{\ell 2}$	—	> 30 GeV	> 30 GeV	
b jet veto	yes	no	yes	
Inverse b jet veto	no	yes	no	

	Variable	ggH V	VBF Resol	ved VH	Boosted VH		Variable	ggH	2-jet ggH
	N _{jet} (V jets)	0	0	0	> 0	· F	e Nie Akelyjets)	0&1	2
Variable	N _{jet} (AK4 jets)	0&1	2	2	_	_	m _{ii}		> 120 GeV
Variable	ggH	VBF	Resolved V	/H Bo	osted VH		Variable	ggH	I 2-jet ggH
N _{iet} (V jets)) 0	0	0		> 0		$N_{\rm iet}$ (AK4 jets)	0&1	. 2
N _{jet} (AK4 j	ets) 0&1	2	2		_		m _{ii}	-	> 120 GeV
m_{jj}	—	> 120 GeV	60–120 Ge	eV	—		$m_{\ell\ell}$	-	$< 55 \mathrm{GeV}$