Non-resonant Di-Higgs searches at CMS

Higgs 2023, Nov 27 - Dec 2, 2023 Institute of High Energy Physics, CAS, Beijing, China

Brunella D'Anzi

on behalf of CMS Collaboration University & INFN Bari, Italy

Motivations

 $m_{X(HH)}$

Resonant HH searches: covered in the talk by T. Kramer and J. Steggemann

Standard Model (SM)

- The measurement of $\sigma(\text{HH})$ is the best way to extract the Higgs self-coupling λ_3

• This parameter determines the shape of the Higgs potential V(H) together with m_H and the vacuum expectation value $\nu \rightarrow$ big consequences for the Universe

(*) λ_3 , λ_4 can be also constrained indirectly from NLO contributions to the single Higgs production cross section

Standard Model (SM)

At LHC the HH pairs are mainly produced through gluon-gluon fusion (ggF) via fermionic loop

• At <u>CMS</u> we also study other production mechanisms:

→ Vector Bosons Fusion (VBF,1.72 fb @ 13 TeV) → Associated with Single Vector boson (VHH, 0.86 fb @ 13 TeV)

Beyond Standard Model (BSM) Physic

Physics Letters B (2014) 142-149 JHEP03(2020)091

- BSM processes can modify HH production rates and kinematics
- In the Higgs Effective Field Theory (HEFT) approach, deviations from the SM are modelled by couplings modifiers kappa ($\kappa_{\lambda} \equiv \lambda_3 / \lambda_3^{SM}$, κ_{2V} , κ_t , κ_V)

- Additional ggF couplings (c₂, c_g, c_{2g})
- Explore sensitivity to BSM EFT couplings with 20 shape benchmarks points:
- \rightarrow based on test statistic measuring kinematics' similarity
- \rightarrow allow extrapolation between different points

Di-Higgs decay channels

• A rich phenomenology with many final states accessible at LHC \rightarrow All decay channels are a compromise between Branching Ratio (BR) and final state signal purity (S/B) \rightarrow There is no a single golden channel!

Largest BR (34%) provides opportunity to explore several production mechanisms and kinematic regimes

Analysis strategy

 ϕ_{RE}

Results

HH→4b resolved

Phys. Rev. Lett. 129 (2022) 081802

Sensitive for VBF production and κ_{2V} variations: X Multi-jet background (QCD 85%, tt 15%)

- Events with at least four jets (anti-k_t, ΔR=0.4, <u>DeepJet</u> btagger), large jet pairing combinatorial
- QCD bkg estimated from data with CR 3b See talk by M. Roguljic
- Subcategories (2 ggF, 2 VBF) to increase signal purity based on m_{HH} (ggF) or BDT to remove ggF (VBF)
- Fit BDT (m_{HH}) in ggF (VBF) categories

HH→4b boosted Phys. Rev. Lett. 131, 041803

- HH pairs reconstructed in two AK8 (large radius) jets having p_T(H) ~ 2m/R > 300 GeV
- Jets tagged with <u>ParticleNet</u> for bt-tagging: 4x better bkg rejection than previous algorithm
- ParticleNet-based ggF and VBF categories; BDT for ggF; m_{HH} as discriminating variable

X Large background

 \mathbf{X} Low $\boldsymbol{\sigma} \cdot \mathsf{BR}$ @ SM

- VHH for the first time at CMS
- 4 channels ($W \rightarrow |\nu$, $Z \rightarrow \nu \nu, Z \rightarrow II, W/Z \rightarrow qq$ and **59 categories** (resolved, boosted, m_{HH} , number of b-jets, signaland tt- enhancement)
- **BDT** and **DNN** classifiers to improve S/B ratio + BDT defining regions sensitive to anomalous values for κ_{λ} or κ_{2V}

Upper limit on o/o

- Events with at least two
 b-jets and 2γ
- Background: continuous γγ+jet and single Higgs
- Dedicated DNN to remove ttH bkg
- Optimized categories based on (BDT, M_x): 12 ggF, 2 VBF

$$\widetilde{\mathbf{M}_{\mathbf{X}}} = m_{bb}\gamma\gamma - m_{bb} - m_{\gamma\gamma} + 2m_H$$

 Signal extracted from unbinned 2D parametric fit (m_{γγ}, m_{bb}) in all categories

Still large BR (7.3%) provides opportunity to explore several production mechanisms

Analysis strategy

 ϕ_{RE}

Results

🔵 nonres VBF 🛑 nonres ggF

More sensitive for κ_{λ} and κ_{2V} close to SM \checkmark Good compromise BR/final state reconstruction \thickapprox Electroweak bkg and top quark mimic signal

 Events with at least two b-tagged (DeepJettagged) jets and 2 (DeepTau tagged) taus (eτ_{had}, μτ_{had}, τ_{had}τ_{had})

• 8 categories: resolved, boosted VBF- and ggF-like

 Fit DNN multiclassificator score (ggF, VBF, ttH, DY, TT)

HH(bbWW)

Large BR (25%) provides opportunity to explore several production mechanisms and kinematic regimes

Analysis strategy

 ϕ_{RE}

Results

HH→bbWW^{*} CMS PAS HIG-21-005

X Large background

- Events with at least one W decaying into leptons and an AK4 (AK8) b-tagged jet if resolved (boosted)
- Tau veto: orthogonality wrt $bb\tau\tau$
- 2 channels based on H→WW^{*} decay: Di-Lepton (WW^{*}→lvlv), Single-Lepton (WW^{*}→lvqq)
- Backgrounds: W+jets, t, tt from MC and normalized by ML fit, data-driven DY estimation with dedicated CRs
- DNN multi-classifier to separate signal vs bkgs (main W+jets, ttbar) : 9(x2) categorie
- Signal extraction for ggF and VBF from 1D fit of DNN score distributions

Small BR (7.7% in total)

 ϕ_{RE}

Results

nonres ggF Multilepton (4V, 2V2τ, 4τ) JHEP 07 (2023) 095 ✓ Small background Ar Small background

- 7 channels distinguished by the leptons' multiplicity :
 - 4I +0 $\boldsymbol{\tau}_{h}$, 3I +0 $\boldsymbol{\tau}_{h}$, 2Iss +0 $\boldsymbol{\tau}_{h}$,
 - $3\mathbf{I} + 1\boldsymbol{\tau}_{h}$, $1\mathbf{I} + 3\boldsymbol{\tau}_{h}$, $2\mathbf{I} + 2\boldsymbol{\tau}_{h}$, $0\mathbf{I} + 4\boldsymbol{\tau}_{h}$
- Resolved category (all channels) and boosted (3I, 2Iss)
- Dedicated BDT trained to separate prompt leptons from nonprompt or misidentified leptons
- Signal extraction from simultaneous fit of output BDTs per channel + 2 CRs (WZ(3I), ZZ(4I))

EFT interpretation examples

Combinations

Statistical combinations (xsec, constraints for selfcouplings) to enhance evidence chance

 ϕ_{RE}

Analysis 1

Analysis 2

Analysis 3

Statistically independent Combination

Non-resonant HH searches | Higgs 2023

B. D'Anzi (INFN Bari)

Non-resonant HH searches | Higgs 2023

Conclusions and perspectives

- HH searches are fundamental to know scalar sector in SM and BSM scenarios
- **Promising results** from **Run 2**, expected to improve in the future:
 - \rightarrow new HH decay channels
 - \rightarrow consider H+HH combinations

 \rightarrow stats are still a limiting factor but ggF theory uncertainty may become important in the future

- Close to SM HH sensitivity and k_{2V} = 0 was excluded
- Run 3 : an opportunity to improve before the HL-LHC → improved trigger strategy will boost HH searches

Summary

HH-+++++++++++++++++++++++++++++++++++	2 HH→bbττ Phys. Lett. B 842 (2023) 137531	$HH \rightarrow WW^* \gamma \gamma$
-2.3 (-5.0) < κ_{λ} < 9.4 (12.0) -0.1 (-0.4) < κ_{2V} < 2.2 (2.5) σ/σ^{HH}_{MS} < 3.9 (7.8) σ/σ^{VBF}_{VP} < 226 (412)	-1.7 (-2.9) < κ_{λ} < 8.7 (9.8) -0.4 (-0.6) < κ_{2V} < 2.6 (2.8) σ/σ^{HH}_{MS} < 3.3 (5.2) σ/σ^{VBF}_{MS} < 124 (154)	<i>σ</i> / <i>σ</i> ^{HH} _{MS} < 97 (53) -25.8 (-14.4) < κ _λ < 24.1 (18.3) -2.4 (-1.7) < <i>c</i> ₂ < 2.9 (2.2)
HH→4b booste	d $HH \rightarrow bb\gamma\gamma$	VHH → 4b CMS PAS HIG-22-006
-9.9 (-5.1) < κ_{λ} < 16.9 (12.2) 0.62 (0.66) < κ_{2V} < 1.41 (1.37) σ/σ^{HH}_{MS} < 9.9 (5.1)	$-3.3 (-2.5) < \kappa_{\lambda} < 8.5 (8.2) -1.3 (-0.9) < \kappa_{2V} < 3.5 (3.1) \sigma / \sigma^{HH}_{MS} < 7.7 (5.2) \sigma / \sigma^{VBF}_{MS} < 225 (208) -0.6 (-0.4) < c_2 < 1.1 (0.9)$	$-37.7 (-30.1) < \kappa_{\lambda} < 37.2 (28.9) -12.2 (-7.2) < \kappa_{2V} < 13.5 (8.9) -14.0 (-10.2) < \kappa_{2W} < 15.4 (11.6) -17.4 (-10.5) < \kappa_{2Z} < 18.5 (11.6) \sigma / \sigma^{VHH}_{MS} < 294 (124)$
HH→bbwww* <u>CMS PAS HIG-21-005</u> σ/ σ^{HH}_{SM} < 14 (18)	Multilepton	HH→bbZZ(4I)
$σ/σ^{VBF}_{SM}$ < 277 (301) -7.2 (-8.7) < $κ_λ$ < 13.8 (15.2) -1.1 (-1.4) < $κ_{2V}$ < 3.2 (3.5) -0.8 (-1.0) < c_2 < 1.3 (1.4)	- 6.9 (- 6.9) < κ _λ < 11.1 (11.7) σ/ σ ^{HH} _{SM} < 21.3 (19.4)	σ/σ ^{HH} _{MS} < 32.4 (39.6) -8.8 (-9.8) < kλ < 13.4 (15.0)

Run 3 and beyond

Run 3 is an opportunity for improvement before the HL-LHC \rightarrow improved trigger strategy will boost HH searches

Nature 607 (2022)

bb tt

Combined

bb bb

bb yy

CMS 10²

10²

CMS PAS HIG-21-014

$HH \rightarrow WW^* \gamma \gamma$

Excellent mass resolution m_{γγ}
 (1-2%)

- 3 channels based on number of leptons: (WW*→4q, WW*→lvlv, WW*→lvqq)
 - \rightarrow 0: multiclass DNN to remove H and jets/ γ bkgs
 - \rightarrow 1: binary DNNs
 - \rightarrow 2: cut-based
- Signal, background from single Higgs are modelled fitting m_{yy} distribution (simulation).
- Continuous bkg: modelled from data
- Parametric fit on m_{γγ} in all categories to extract signal (100 180 GeV)

Clean signature of final state

- Events with four identified leptons (4mu, 4e, 2e2mu) + selection of 2 extra jets with highest <u>DeepCSV</u> score
- Reconstruction strategy for H(ZZ) candidate taken from single Higgs analysis
- Fake non-prompt leptons (e → γ conversion, misreconstructed jets, HF decays) estimated from data in Z+1L+2 jets and applied to Z+2L+2 jets region
- Backgrounds: single Higgs and ZZ production (MC), Z+X (from data)
- Signal vs bkg discrimination with BDT being fed full b-tagger distribution jets → year and channeldependent training to get results from BDT score fitting

 $\mu^{\rm HH}_{\rm MS}$ < 32.4 (39.6) -8.8 (-9.8) < κ_{λ} < 13.4 (15.0)

The CMS detector

CMS consists of a series of detectors arranged in an onion shape around the collision point:

- Solenoid magnet : B = 3.8 T
- The Tracker, a silicon device (15148 strip+1856 pixel), is the most internal sub-system of CMS, used to detect the passage of charged particles (η < 3.0) providing position measurements ($\sigma(d_{xy})$ ~20 75 µm) and momentum ($\sigma(p_T) \sim 1.5\%$) up to 100 GeV
- The Electromagnetic Calorimeter, a homogeneous calorimeter with PbWO₄ crystals $(\sigma(p_T) \sim 1.6 5\%)$, measures the energy of electrons, positrons and photons
- The Hadron Calorimeter is located inside the magnet (most powerful solenoid ever made – 3.8 T) and measures the energy of the hadrons
- The muon system consists of 1400 muon chambers
 - \rightarrow CMS is designed to detect muons very accurately

Experimental sensitivity depends on HH kinematics

- \rightarrow Low m_{HH}: higher background contamination from QCD / ttbar
- → Results in lower sensitivity

 $\rightarrow\,$ In addition, finite rate available at the trigger $\rightarrow\,$ challenging to record produced events!

 $\rightarrow\,$ Sensitivity driven by high $m_{\rm HH}$ with lower background and better object reconstruction

Access to self-couplings: single Higgs production Eur. Phys. J. C 77, 887 (2017)

 $\boldsymbol{\lambda}$ can be constrained indirectly thorugh single Higgs production at NLO.

Diagrams NLO contributing to Higgs self-couplings

Benchmarks

- Group different coupling values in 5D space (κ_{λ} , κ_{t} , c_{2} , c_{a} , c_{2a}): benchmark point.
- JHEP04: Grouping is done based on loglikelihood ratio for observables m_{HH} and $\cos \theta^*$ at LO. - 12 points in 5D space.
- $\cos \theta^*$: Angle between one of the
- Higgses and beam direction in HH frame.

	1	2	3	4	5	6	7	8	9	10	11	12	8a
kl	7.5	1.0	1.0	-3.5	1.0	2.4	5.0	15.0	1.0	10.0	2.4	15.0	1.0
kt	1.0	1.0	1.0	1.5	1.0	1.0	1.0	1.0	1.0	1.5	1.0	1.0	1.0
c2	-1.0	0.5	-1.5	-3.0	0.0	0.0	0.0	0.0	1.0	-1.0	0.0	1.0	0.5
cg	0.0	-0.8	0.0	0.0	0.8	0.2	0.2	-1.0	-0.6	0.0	1.0	0.0	0.8/3
c2g	0.0	0.6	-0.8	0.0	-1.0	-0.2	-0.2	1.0	0.6	0.0	-1.0	0.0	0.0

mhh [GeV]

		Be	nc	hm	nar	ks		1	2	3	4	5	6	7
■ <u>JHEP03</u> :		K ₂	K+	C ₂	C.	C 2~	kl	3.94	6.84	2.21	2.79	3.95	5.68	-0.10
Grouping is done	SM	1.0	1.0	0.0	0.0	0.0	kt	0.94	0.61	1.05	0.61	1.17	0.83	0.94
using unsupervised	23	1.0 1.0	1.0 1.0	0.5 -1.5	-0.8 0.0	0.6 -0.8	c2	-1./3.	1./3.	-1./3.	1./3.	-1./3.	1./3.	1.
learning algorithm	JHEP04 5	-3.5 1.0 2.4	1.5 1.0	-3.0 0.0	0.0 0.8 0.2	0.0 -1	cg	0.5*1.5	0.0*1.5	0.5*1.5	-0.5*1.5	1./6.*1.5	-0.5*1.5	1./6.*1.5
to identify different	7 8	5.0 15.0	1.0 1.0	0.0 0.0	0.2 -1	-0.2 1	c2g	1./3.*(-3.)	-1./3.*(-3.)	0.5 *(-3.)	1./6.*(-3.)	-0.5 *(-3.)	1./3.*(-3.)	-1./6.*(-3.)
shapes in m _{HH}	9 10 11 12	1.0 10.0 2.4 15.0	1.0 1.5 1.0 1.0	1.0 -1.0 0.0 1.0	-0.6 0.0 1 0.0	0.6 0.0 -1 0.0	≥ 0.20	Cluste	er 1	5	Cluster 3	Σ.	Clus	iter 4
- 7 points in 5D space	⊖. ^{8a}	1.0 3.94	1.0 0.94	0.5 $\frac{-1}{3}$ 1	0.8 0.75	0.0	/d [1/Ge			0.075		0.06 J ارم [1/96	0 ⁻	
	JHEP033b	2.21	1.05 0.61	$\frac{3}{-1}$	0.75	-1.5 -0.5	(⁴⁴ <i>up</i>)	1 k 1 k		€ 0.050		(qup)	J.030-	
	40 5b 6b	3.95 5.68	1.17 0.83	$\frac{-1}{3}$ $\frac{1}{3}$	0.25 -0.75	1.5 -1.0	90.00	400 mpp [G	eóo sóo GeV]	0/0p		<u> </u>	400	600 800

7h

B-Tag algorithms CMS

DeepJet (small R, AK4)

- · Low-level information directly in a DNN to tag jets
- Jet as a list of particles lista di particelle (CNN-1D)
- Tagging heavy quarks and separate quark-gluons in one go

Category

Label

DeepAK8 (grande R - boosted)

- Jet as a sequence of particles
- Very versatile → different decays having different content in flavour

B-Tag algorithms CMS

DeepTau

- Convolutional Deep Neural Network to discriminate τ s from jets, electrons and muons
- Information on τ high-level and event properties are combined with those on low-level ParticleFlow candidates, fully reconstructed electrons and muons and used as input
- Each candidate is inserted into a grid (η, ϕ) , divided into three blocks (hadron, muon, e-gamma)
- Signal cone: $\Delta R < 0.1 (11 \times 11)$; insulation cone: $\Delta R < 0.5 (21 \times 21)$

B-Tag algorithms CMS

ParticleNet

- Graph Neural Network to classify jets
- Jets as non-ordered sets of particles in the space
- Input: ParticleFlow candidates and secondary vertices
- Multiclassifier with several output nodes: W/Z/H/top/QCD+decays Example: discriminante bb $D_{bb} = \frac{P[X \rightarrow bb]}{P[X \rightarrow bb] + P[OCD]}$
- Learn in a gerarchical way: first local structures then the global ones ٠
- $\frac{Z[[\rightarrow YY]]}{Z[[\rightarrow YY]]Z[_`a]})$ Significant improvement in performance wrt previous algorithms (like AK8) → factor 2 per jet S/B

HH⊸4b

138 fb⁻¹ (13 TeV)

QCD

tī+jets

Bkgd. unc.

HH⊸bbττ

Sum of backgrounds

Non-resonant HH searches | Higgs 2023

HH⊸bbγγ

- Combination with ttH(→γγ) to improve constrain kλ and kt
- Additional orthogonal categories for events not passing HH selection to target ttH

- 2 minima likelihood due to cross section dependence on kλ and different acceptance of categories
- 2D scan (kλ,kt) to better constrain kλ and kt (valid only when |kt|~1)

Object selection

Channel	Vector boson decay products selection	Vector boson reconstruction and selection	Jet selection		Categor	y defini	ion bas W/7	ea on tr		ay of
MET small-radius		$\vec{p}_{\rm T}^{\rm Z} = \vec{p}_{\rm T}^{\rm miss}$ $\vec{p}_{\rm T}^{\rm Z} > 150 {\rm GeV}$	\geq 4 small-radius jets with $p_T > 35 \text{ GeV}$				v v / Z			
MET		$\vec{p}_{\mathrm{T}}^{\mathrm{Z}} = \vec{p}_{\mathrm{T}}^{\mathrm{miss}}$	≥2 large-radius jets		MET small-radius	MET large-radius	1L small-radius	1L large-radius	2L	FH
large-radius	$p_{\rm T}^{\rm e} > 32(28) { m GeV}$	$p_{\mathrm{T}}^{\mathcal{L}} > 250 \mathrm{GeV}$	with $p_T > 200 \text{ GeV}$ $\geq 3 \text{ small-radius jets}$ with $v_T > 25 \text{ GeV}$ and	Coupling enrichment	$\kappa_{\lambda}, \kappa_{\rm VV}$	κ _{VV}	$\kappa_{\lambda}, \kappa_{\rm VV}$	κ _{VV}	$\kappa_{\lambda}, \kappa_{\rm VV}$	$\kappa_{\lambda}, \kappa_{\rm VV}$
1L	2018/2017 (2016) OR $p_{T_o}^{\mu} > 25 \text{ GeV}$	$ec{p}_{\mathrm{T}}^{\mathrm{W}} = ec{p}_{\mathrm{T}}^{\ell} + ec{p}_{\mathrm{T}}^{\mathrm{miss}}$ $p_{\mathrm{T}}^{\mathrm{W}} > 125 \mathrm{GeV}$	\geq 4 small-radius jets with $p_{\rm T}$ > 15 GeV OR	N_{b}	$N_{\rm b} \ge 3$		$N_{\rm b} \ge 3$	_	$N_{\rm b}=3$ $N_{\rm b}=4$	$N_{\rm b}=4$
	$\Delta \phi(\vec{p}_{\mathrm{T}}^{\ell},\vec{p}_{\mathrm{T}}^{\mathrm{miss}}) < 2.0$		≥2 large-radius jets with p _T > 200 GeV	$D_{b\overline{b},1} \times D_{b\overline{b},2}$	_	HP, LP	_	HP, LP	_	_
	$p_{\rm T}^{\mu_1}>20{\rm GeV}$			SR, CR	SR+CR	SR+CR	SR+CR	SR+CR	SR, CR	SR
2L	$p_{ m T}^{\mu_2} > 20 { m GeV} \ p_{ m T}^{e_1} > 25 { m GeV}$	$\vec{p}^{Z} = \vec{p}^{\ell_1} + \vec{p}^{\ell_2}$ $p_{\mathrm{T}}^{Z} > 50 \mathrm{GeV}$	\geq 4 small-radius jets with $p_{\rm T}$ > 20 GeV	SB	$\kappa_{\lambda} + \kappa_{\rm VV}$	HP, LP	$\kappa_{\lambda} + \kappa_{ m VV}$	HP, LP	$N_{\rm b} = 3$ $N_{\rm b} = 4$	—
	$p_{\rm T}^{c_2} > 20 { m GeV}$			tŦ CR	_	_	_	—	One	_
FH	$n^{J_i} > 20 \text{ GeV}$	$\vec{p}^{\mathrm{V}}=\vec{p}^{\mathrm{J}_1}+\vec{p}^{\mathrm{J}_2}$	\geq 4 small-radius jets with $p_{\rm T} > 40$ GeV and	Year split	Per year	Per year	Per year	Per year	Combined	Per year
$p_{\rm T} > 20 {\rm Gev}$	$p_{\rm T} > 20 {\rm GeV}$	$65 < m_{\rm V} < 105 {\rm GeV}$	≥6 small-radius jets with p _T > 20 GeV	Total regions	9	12	9	12	11	6

Variables used for the BDT training to separate enriched regions for κ_{λ} , $\kappa_{2\vee}$

Input variable	MET	1L	2L	FH	m _{H₂}	✓	✓						
m _{HH}	~	~	~	~	$p_{\rm T}^{\rm H\dot{\rm H}}$	\checkmark	\checkmark		$\eta_{ m HH}$	\checkmark	\checkmark		\checkmark
$p_{\mathrm{T}}^{\mathrm{H}_2}$	\checkmark	\checkmark			P 1	•			,				/
$p_{\mathrm{T}}^{\mathrm{V}}$	\checkmark	\checkmark	\checkmark	\checkmark	$m_{\rm H_1}$	\checkmark	\checkmark		$\eta_{ m H_1}$				\checkmark
$\Delta R(H_1, H_2)$	\checkmark	\checkmark	\checkmark	\checkmark	$\Delta n(\mathbf{H}_1,\mathbf{H}_2)$	\checkmark	\checkmark	\checkmark	$\eta_{ m H_2}$				\checkmark
$\Delta \phi(\ell_1,\ell_2)$			\checkmark			•	•	•	H_2 , H_1	1	1		1
$p_{\mathrm{T}}^{\mathbf{H}_{1}}$	\checkmark	\checkmark	\checkmark	\checkmark	$\Delta \phi(\mathrm{H_1,H_2})$	\checkmark	\checkmark	\checkmark	$p_{\rm T}^{2} / p_{\rm T}^{1}$	\checkmark	\checkmark	√	\checkmark
$\Delta\eta(\ell_1,\ell_2)$			\checkmark		Energy of H ₁	\checkmark	1	\checkmark	$p_{\rm T}^{\ell_2} / p_{\rm T}^{\ell_1}$			\checkmark	
$\Delta R(J_{1,H_2}, J_{2,H_2})$			\checkmark			•	•	•	l ₁			1	
$\Delta R(J_{1,H_1}, J_{2,H_1})$			\checkmark		Energy of H ₂	\checkmark	\checkmark	\checkmark	p_{T}			√	
$p_{\mathrm{T}}^{\ell_1}/m_{\mathrm{V}}$			\checkmark		Energy of HH	1	1	1	Simulation year	\checkmark	\checkmark		
$\Delta \phi(V, H_2)$	\checkmark	\checkmark	\checkmark	\checkmark	Litergy of fiff	•	•	•					

Objects selection

- Small radius jets:
 - $p_T > 25 \text{ GeV}, |\eta| < 2.4$
 - Medium working point on the DeepJet score
- Large radius Jets:
 - $p_T > 200 \text{ GeV}, |\eta| < 2.4,$
 - $\tau_2 / \tau_1 < 0.75$
 - sub-jet p_T > 20 GeV
 - 30 < m_{sD} < 210
 - m_{jj} > 12 GeV

Single Lepton Categories

Top + Higgs	Reso	Boosted		
HH(GGF) HH(VBF)	Resolved 1b Resolved 1b	Resolved 2b Resolved 2b	Boosted Boosted	
Categories	Su			

Di Lepton Categories

Categories	Sub-Categories					
HH(GGF)	Resolved 1b	Resolved 2b	Boosted			
HH(VBF)	Resolved 1b	Resolved 2b	Boosted			
Top + Other	Resc	Boosted				
DY + Multi-boson	Inclusive					

QCD multijet, Fake lepton estimation:

- SR \rightarrow Signal region
- AR → Similar to signal region but lepton fails the tight selection
- Prompt \rightarrow lepton matched with generator level lepton coming from W, Z, τ or Higgs
- FF → fake factor which is the probability to pass the fake to tight cut

DY estimation

- Calculate transfer weight from 0-bjet
 →1/2-bjet region in Z-peak region
- Weights are binned in HT (P_T sum of AK4 jets) for resolved and softdrop mass of leading AK8 jet for boosted category.
- Apply transfer weight in Z-veto region
- Non DY backgrounds are subtracted from data in both Z-peak and Z-veto region.

Category	$2\ell ss$	3ℓ	4ℓ			
Targeted HH decays	WW^*WW^*	WW^*WW^*	WW^*WW^*			
Trigger	Single- and double-lepton	Single-, double- and triple-lepton	Single-, double- and triple-lepton			
Lepton $p_{\rm T}$ Lepton charge sum	>25 / 15 GeV ±2, with charge quality requirements applied	$>25 / 15 / 10 { m GeV}$ ± 1	$V > 25 / 15 / 15 / 10 { m GeV}$ 0			
Dilepton invariant mass	$ m_{\ell\ell}-m_{\rm Z} >10{\rm GeV}^{\dagger}$	$ m_{\ell\ell}-m_{\rm Z} >10{\rm GeV}$	$V^{~\ddagger} ~~ m_{\ell\ell} - m_{ m Z} > 10 { m GeV}^{~\ddagger}$			
Jets	≥ 2 small-radius jets or ≥ 1 large-radius jet	≥ 1 small-radius jet ≥ 1 large-radius jet	or —			
Missing $p_{\rm T}$	$p_{\mathrm{T}}^{\mathrm{miss,LD}} > 30\mathrm{GeV}^{-\S}$	$p_{\rm T}^{\rm miss,LD} > 30{\rm GeV}$				
Category Targeted HH decays	$\frac{3\ell+1\tau_h}{WW^*\tau\tau}$		$\frac{2\ell+2\tau_{\rm h}}{WW^*\tau\tau,\tau\tau\tau\tau}$			
Trigger	Single-, double and triple-lepte	≻, on	Single- and double-lepton			
Lepton $p_{\rm T}$	>25 / 15 / 10 G	leV	$>25 / 15 \mathrm{GeV}$			
$ au_{ m h} \; p_{ m T}$	$>\!20{ m GeV}$		$> 20 { m GeV}$			
Lepton and τ_h charge Dilepton invariant mass	$\ell { m and} au_{ m h} { m charges} { m su} \ m_{\ell\ell}-m_{ m Z} >10 { m C}$	m to 0 ℓ GeV [‡]	$\ell { m and} au_{ m h} { m charges} { m sum} { m to} 0 \ m_{\ell\ell}-m_{ m Z} >10 { m GeV}^{ \ddagger}$			
Category Targeted HH decays	$\frac{1\ell+3\tau}{\tau\tau\tau\tau}$	r _h	4τ _h ττττ			
Trigger	Single-lepton, l and doub	$\mathrm{epton} + \tau_{\mathrm{h}}$ le- $ au_{\mathrm{h}}$	$\mathrm{Double-}\tau_{\mathrm{h}}$			
Lepton η Lepton $p_{\rm T}$ $ au_{\rm h}$ $p_{\rm T}$ Lepton and $ au_{\rm h}$ charge	$egin{array}{c} \eta < 2 \ > 20 { m GeV} \ ({ m e}) \ { m or} \ 20 \ { m set} \ \gamma_{ m h} \ { m charge} \ + 1 \ { m and} \ { m thar thar thar thar thar thar that that$.1 >15 GeV (μ) 20 GeV es sum to 0	$>\!\!40$ / 30 / 20 / 20 GeV $\tau_{\rm h}$ charges sum to 0			
$\mathbf{Z} \rightarrow \mathbf{ee} \ \mathbf{veto}$	$ m_{\mathrm{e} au_{\mathrm{h}}}-86\mathrm{GeV} $	$> 15 \mathrm{GeV}$ ¶				

Results from projection study at HL-LHC

CERN Yellow Report

- HL-LHC projection is studied at 3000 fb⁻¹ and center of mass energy 14 TeV.
- Five channels are considered: bbbb, $bb\gamma\gamma$, $bb\tau\tau$, $bbZZ(4\ell)$, $bbVV(\ell\ell)$.

- Constraint on Higgs self-coupling: $-0.8 < \kappa_{\lambda} < 3.6$ at 95% confidence level
- New channels have been added as well as improvement in analysis have been made after this study!

Channel

B [%]