Implication of the 95GeV di-tau and di-photon excesses

Teppei Kitahara

- Institute of Theoretical Physics, Chinese Academy of Sciences
 - with: Syuhei Iguro, Yuji Omura, Hantian Zhang Refs: <u>2205.03187</u>, <u>2211.00011</u>
 - Higgs 2023, IHEP, Beijing
 - November 28, 2023

95GeV di-tau excess

~95GeV di-tau excess: CMS Run-2 result CMS-PAS-HIG-21-001, 2208.02717

Implication of the 95GeV di-tau and di-photon excesses Teppei Kitahara (ITP, CAS), Higgs2023, IHEP, November 28, 2023

ATLAS $h_{\rm SM} \to \tau^+ \tau^-$ data $\sigma \lesssim 11 {\rm pb}$ consistent with [Iguro, TK, Omura, 2205.03187]

95 GeV di-photon excess

~95GeV di-photon excess: CMS Run-2 result and ATLAS Run-2

Implication of the 95GeV di-tau and di-photon excesses **Teppei Kitahara** (ITP, CAS), Higgs2023, IHEP, November 28, 2023

Introduction

- The di-photon decay can be interpreted as spin 0 or 2 resonance (Landau-Yang theorem)
- Our assumption: 95GeV di-tau and di-photon excesses are interpreted by spin-0 scalar ϕ . The gluon fusion amplitude is dominated by the top-quark loop.
- Question: How about the CP-state of ϕ ? Is there any way to confirm this anomaly?

Implication of the 95GeV di-tau and di-photon excesses **Teppei Kitahara** (ITP, CAS), Higgs2023, IHEP, November 28, 2023

Minimal setup

$$-\mathcal{L}_{\text{eff}} = \frac{\rho_{tt}^{H}}{\sqrt{2}}\bar{t}Ht + \frac{\rho_{\tau\tau}^{H}}{\sqrt{2}}\bar{\tau}H\tau \pm i\frac{\rho_{tt}^{A}}{\sqrt{2}}\bar{t}A\gamma_{5}t + i\frac{\rho_{\tau\tau}^{A}}{\sqrt{2}}\bar{\tau}A\gamma_{5}\tau$$

The bottom-coupling is supposed to be small: 1. To amplify $BR(\phi \rightarrow \tau^+ \tau^-)$ $\tau\tau$, bb, gg, $\gamma\gamma$ and $Z\gamma$ 2. There is no excess in *b*-associated $\tau\tau$ signal region

Sign of ρ_{tt}^A depends on UV theory, but no impact on our study

Implication of the 95GeV di-tau and di-photon excesses Teppei Kitahara (ITP, CAS), Higgs2023, IHEP, November 28, 2023

gluon fusion channel

CP-even scenario

Implication of the 95GeV di-tau and di-photon excesses Teppei Kitahara (ITP, CAS), Higgs2023, IHEP, November 28, 2023

NNLO @SusHi $\sigma(pp \rightarrow gg \rightarrow H) = 87.2 \, (\rho_{tt}^H)^2 \text{ pb} \quad \text{for } m_H = 95 \, \text{GeV}$ $N^{3}LO < 3\%$

NLO @MadGraph5+K-factor $\sigma(pp \rightarrow t\bar{t} + H) \times BR(H \rightarrow \tau\bar{\tau}) = [0.056, 0.094, 0.14] \text{ pb}$ [Frixione, et al, 1407.0823] **larger than SM:** $\sigma(pp \to t\bar{t} + h_{\rm SM}) \times {\rm BR}(h_{\rm SM} \to \tau\bar{\tau}) \simeq 0.03 {\rm pb}$ $\sigma(pp \to t\bar{t} + Z) \times BR(Z \to \tau\bar{\tau}) \simeq 0.03 pb$

CP-odd scenario

Implication of the 95GeV di-tau and di-photon excesses **Teppei Kitahara** (ITP, CAS), Higgs2023, IHEP, November 28, 2023

- NNLO @SusHi

NLO @MadGraph5+K-factor $\sigma(pp \to t\bar{t} + A) \times BR(A \to \tau\bar{\tau}) = [0.007, 0.011, 0.017] \, pb$ [Frixione, et al, 1407.0823; Frederix, et a, 1104.5613] smaller than SM: $\sigma(pp \to t\bar{t} + h_{\rm SM}) \times {\rm BR}(h_{\rm SM} \to \tau\bar{\tau}) \simeq 0.03 {\rm pb}$ $\sigma(pp \to t\bar{t} + Z) \times BR(Z \to \tau\bar{\tau}) \simeq 0.03 pb$

Comparisons

CP-even H

 $\sigma(pp \to gg \to H) = 87.2 \, (\rho_{tt}^H)^2 \, \text{pb}$

 $\sigma(pp \rightarrow t\bar{t} + H) = 1.07 \, (\rho_{tt}^H)^2 \, \text{pb}$

Three times larger

 $\sigma(pp \to t\bar{t} + H) \times BR(H \to \tau\bar{\tau}) = [0.056, 0.094, 0.14] \text{ pb}$

As a result, predicted $\sigma(pp \rightarrow t\bar{t}\tau^+\tau^-)$ differs by an order of magnitude. Angular distribution also differs

Implication of the 95GeV di-tau and di-photon excesses **Teppei Kitahara** (ITP, CAS), Higgs2023, IHEP, November 28, 2023

$\mathsf{CP}\operatorname{-odd} A$

 $\sigma(pp \to gg \to A) = 201.7 \, (\rho_{tt}^A)^2 \, \text{pb}$ Two times larger $\sigma(pp \rightarrow t\bar{t} + A) = 0.30 \, (\rho_{tt}^A)^2 \, \text{pb}$

Constructive/destructive interference and sensitive to γ_5 [Djouadi, hep-ph/0503173; Frederix, et a, 1104.5613; Dolan, et al, 1606.00019]

[0.007, 0.011, 0.017] pb

Comparison to ATLAS $tt + \tau\tau$ search

under the BDT is similar to the SM Higgs (red)

ATLAS Run-2 $t\bar{t}h, h \to \tau^+\tau^$ search

Implication of the 95GeV di-tau and di-photon excesses Teppei Kitahara (ITP, CAS), Higgs2023, IHEP, November 28, 2023

We estimate the sensitivity to probe $t\bar{t}\phi \rightarrow t\bar{t}\tau^+\tau^-$, assuming that the $m_{\tau\tau}$ distribution of

 χ^2 analysis (reproducing correct μ_h bound) figures out $\sigma(pp \to t\bar{t} + \phi) \times BR(\phi \to \tau\bar{\tau}) < 0.050 \,\text{pb}$ (95%CL)

CP-even H 1.00.8global 0.6 ho_{tt}^{H} boosted $\tau \bar{\tau}$ search 0.4CMS XY ext 0.2 $t\bar{t} + \tau\bar{\tau}$ search CMS $\tau \bar{\tau}$ excess $m_H = 95 \,\mathrm{GeV}$ 0.00.000 0.0040.006 0.0080.0100.002 $ho^H_{ au au}$

CP-even H interpretation is disfavored by the ATLAS Run-2 data of $t\bar{t}\tau^+\tau^-$ search

Implication of the 95GeV di-tau and di-photon excesses Teppei Kitahara (ITP, CAS), Higgs2023, IHEP, November 28, 2023

Results [Iguro, TK, Omura, 2205.03187]

Test of 95GeV CP-odd A within general 2HDMs

How to probe the 95GeV CP-odd A particle? \rightarrow We propose di-Higgs (hA) search Let us assume the following mass spectrum within general 2HDMs In this setup, production cross section of di-Higgs (hA) depends on only three-parameter (heavy scalar mass, + Higgs alignment limit assumption two couplings; ρ_{tt}^A , λ_{hAA}) [Iguro, TK, Omura, Hantian, 2211.00011] for Higgs precision tests $m_H = m_{H^{\pm}}$ for EWPO destructive $m_{h^{\rm SM}}$ hAA interference $m_A = 95 \text{GeV}$ for di-tau di-photon Non-alignment case, DY process ρ_{tt} ~ (\mathcal{O}) UX $q\bar{q} \rightarrow Z^* \rightarrow hA$ exists

Implication of the 95GeV di-tau and di-photon excesses **Teppei Kitahara** (ITP, CAS), Higgs2023, IHEP, November 28, 2023

irreducible contributions to di-Higgs production

Implication of the 95GeV di-tau and di-photon excesses **Teppei Kitahara** (ITP, CAS), Higgs2023, IHEP, November 28, 2023

Di-Higgs (hA) production [Iguro, TK, Omura, Hantian, 2211.00011]

allowed region is in White

red contor is $\sigma(gg \rightarrow hA)/(\rho_{tt}^A)^2$ [fb]

The NLO K-factor $\simeq 2$ is not included in this plot See [Abouabid, et al, 2112.12515]

95GeV excesses prefer $\rho_{tt}^A \sim 0.4$

 $\sigma(gg \to hA \to b\bar{b} + \tau^+\tau^-) \simeq 5 \,\text{fb}$

Current LHC sensitivity [CMS, 2206.09401]

$$\sigma(pp \to 2h \to b\bar{b}\tau^+\tau^-) < 7.5 \,\text{fb}$$

$$\sigma(pp \to 2h \to b\bar{b}\tau^+\tau^-)_{\text{SM}} = 2.3 \,\text{fb}$$

Such a mass spectrum in 2HDMs could be tested by $b\bar{b}\tau^+\tau^-$ channel in near future

Conclusions

- di-photon modes
- search, while CP-odd A is allowed
- The 95GeV CP-odd A scenario could be tested within the 2HDMs by

Implication of the 95GeV di-tau and di-photon excesses Teppei Kitahara (ITP, CAS), Higgs2023, IHEP, November 28, 2023

We investigated CP-even/odd scalar interpretations of the 95GeV excesses in di-tau and

CP-even H interpretation of di-tau excess is disfavored by the ATLAS Run-2 data of $t\bar{t}\tau^+\tau^-$

 $gg \to hA \to b\bar{b}\tau^+\tau^-$, whose cross section can be larger than $\sigma(pp \to 2h \to b\bar{b}\tau^+\tau^-)_{SM}$

