Higgs-strahlung at the LHC in the inert doublet model: Full NLO EW and QCD corrections

Dazhuang He¹ Collaborated with Yu Zhang², Fawzi Boudjema³, Hao Sun¹

¹Institute of Theoretical Physics, Dalian University of Technology. ²School of Physics, Hefei University of Technology. ³LAPTh, Université Savoie Mont Blanc, Annecy, France.

Higgs 2023

Outline

A brief Introduction to inert doublet model

- Model
- Constraints and Benchmark Points

2 NLO calculations for Higgs-strahlung at the LHC in IDM

- Leading order
- NLO EW corrections
- Calculation framework (SloopS)

3 Numerical results

- Results of γ-induced
- Scenario without DM constraints
- Scenario with DM constraints

Summary

Introduction to IDM \hookrightarrow Lagrangian

The inert doublet model(IDM) Lagrangian[Deshpande:1977rw]:

$$\mathcal{L}_{IDM}^{\text{scalar}} = (D^{\mu}\Phi_{1})^{\dagger}D_{\mu}\Phi_{1} + (D^{\mu}\Phi_{2})^{\dagger}D_{\mu}\Phi_{2} - V_{IDM}(\Phi_{1}, \Phi_{2})$$

The interaction potential: **discrete** \mathbb{Z}_2 **symmetry**

$$V_{\text{IDM}}(\Phi_1, \Phi_2) = \mu_1^2 |\Phi_1|^2 + \mu_2^2 |\Phi_2|^2 + \lambda_1 |\Phi_1|^4 + \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \frac{1}{2} \lambda_5 \left[\left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \text{h.c.} \right]$$
(1)

Two Higgs doublets:

$$\Phi_1 = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(v+h+iG^0) \end{pmatrix} \quad \text{and} \quad \Phi_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}}(X+iA) \end{pmatrix}$$

DM candidate:

 Φ_2 not couple to SM fermions \Rightarrow Stable **DM** candidate: **X**

Introduction to IDM \hookrightarrow Parameters

The relations between original and physical parameters:

Independent parameters(physical):

★ ∃ ▶ ★ ∃ ▶ ∃ = 𝒴 𝒫𝔅

1) Theoretical constraints:

- Perturbativity
- Vacuum Stability
- Unitarity

2) Collider constraints:

- Direct search from LEP
- Diphoton signatures
- Invisible Higgs decay
- Electroweak Precision Observables
- Direct search at the LHC

	$M_X(\text{GeV})$	$M_A(\text{GeV})$	$M_{H^{\pm}}(\text{GeV})$	λ_L	(λ_3, λ_A)
BP0	70	571	571	1	(11.61,11.61)
BP1	500	500	500	7.07692	(7.08,7.08)
BP2	220	320	320	2.30769	(4.09,4.09)

Higgs 2023

3) Dark matter constraints:

- Dark matter Relic Density, $0.096 < \Omega h^2 < 0.144$.
- Dark matter direct detection, $|\lambda_L| \times 10^3 < 6 \times (M_X/100 \text{ GeV})^{3/2}$.

	$M_X(\text{GeV})$	$M_A(\text{GeV})$	$M_{H^{\pm}}(\text{GeV})$	$\lambda_L(10^{-3})$	(λ_3, λ_A)
BP3	59	113	123	1.0	(0.38, 031)
BP4	60	68	150	0.0	(0.62,0.03)
BP5	550	551	552	19.3	(0.09,0.06)

- Gluon-gluon fusion, VBF, Higgs-strahlung
- The tree-level (parton level): pure SM

where $q_i, q_j = u, d, s, c, b$ in five flavor scheme.

- New physics effects at NLO.
- NLO QCD corrections are SM [Ciccolini:2003jy, Denner:2011id].

Higgs-strahlung at LHC \hookrightarrow NLO EW corrections

The G_{μ} -scheme for electric charge *e*, [Denner:1991kt]

$$\delta Z_e^{G_\mu} = \delta Z_e^{\alpha(0)} - \frac{1}{2} \triangle r.$$
⁽²⁾

Cancelled the UV singularities:

$$\sigma_{\text{UV-finite}}^{\text{nlo}}\left(\frac{1}{\epsilon_{IR}^{2}},\frac{1}{\epsilon_{IR}}\right) = \sigma_{\text{V}}\left(\frac{1}{\epsilon_{IR}^{2}},\frac{1}{\epsilon_{IR}},\frac{1}{\epsilon_{\text{UV}}}\right) + \sigma_{\text{VC}}\left(\frac{1}{\epsilon_{\text{UV}}}\right).$$

Higgs-strahlung at LHC \hookrightarrow NLO EW corrections

• Virtual corrections(IR) • Real photon radiation (IR)

• γ -induced corrections (collinear singularities)

Subtracting the IR singularities

1): Two cutoff phase space slicing **2):Dipole subtraction**

• Two cutoff phase space slicing (TCPSS, δ_s , δ_c) [Harris:2001sx]:

$$\sigma_{\text{IR-Finite}}^{\text{TCPSS}} = \sigma_{\text{V}}(\frac{1}{\epsilon_{\text{IR}}}, \frac{1}{\epsilon_{\text{IR}}^2}) + \sigma_{\text{S}}(\delta_s, \frac{1}{\epsilon_{\text{IR}}}, \frac{1}{\epsilon_{\text{IR}}^2}) + \sigma_{\text{coll}}(\delta_s, \delta_c, \frac{1}{\epsilon_{\text{IR}}}) + \sigma_{\text{H}\overline{\text{C}}}(\delta_s, \delta_c)$$

• Dipole subtraction(DS) [Catani:1996jh]:

$$\begin{aligned} \sigma_{\text{IR-Finite}}^{\text{DS}} &= \int_{3} \underbrace{\left[d\sigma_{R} - d\sigma^{A} \right]}_{d\sigma_{\text{Dipole}}} + \int_{2} \left[d\sigma_{V} + \underbrace{\int_{1} d\sigma^{A}}_{d\sigma_{\text{IntDipole}}} \right] \\ &= \sigma_{\text{Dipole}}(\alpha') + \left[\sigma_{V}(\frac{1}{\epsilon_{\text{IR}}}, \frac{1}{\epsilon_{\text{IR}}^{2}}) + \sigma_{\text{IntDipole}}(\alpha', \frac{1}{\epsilon_{\text{IR}}}, \frac{1}{\epsilon_{\text{IR}}^{2}}) \right]. \end{aligned}$$

Higgs-strahlung at LHC \hookrightarrow DS and TCPSS schemes

• Results checking:

 $p p \rightarrow W^- h \gamma$

Higgs-strahlung at LHC \hookrightarrow Calculation framework: SloopS

$\begin{array}{l} \text{Higgs-strahlung at LHC} \\ \hookrightarrow \text{Results checking} \end{array}$

The cross checking between Madgraph and SloopS:

		Madgraph	SloopS	
74	LO	0.6021(5)	0.6022(1)	
	NLO(QCD)	0.825(2)	0.824(1)	
W^{-h}	LO	0.4282(4)	0.4283(1)	
	NLO(QCD)	0.528(2)	0.5279(2)	
W^+h	LO	0.6803(6)	0.6804(2)	
	NLO(QCD)	0.839(3)	0.8420(4)	
H^+H^-	LO	0.00800(2)	0.007996(3)	
	NLO(QCD)	0.00930(2)	0.009338(4)	

More things:

https://lapth.cnrs.fr/projects/PrecisionCalculations/idm_at_1loop Arxiv:1906.11269, 2101.02165, 2101.02166, 2101.02167, 2101.02170

▶ Ξ = つへで

The [Baglio:2022wzu] given the $N^3LO\ QCD$ corrections results for Higgs-strahlung in SM

The NLO QCD corrections can reach the accuracy of N³LO when x > 2, especially for Zh production.

The default renormalization and factorisation scales $u_R = u_F = 2 * (M_V + M_h)$

Numerical results \hookrightarrow Results of γ -induced

The contributions of γ -induced:

		13 TeV(pb)			14 TeV(pb)		
		$\sigma_{\rm EW}^{\rm SM\prime}(\Delta_{\rm EW}^{\rm SM\prime})$	$\sigma^{\rm SM}_{\gamma-\rm induced}(\Delta^{\rm SM}_{\gamma})$	$\sigma_{\rm EW}^{\rm SM}(\Delta_{\rm EW}^{\rm SM})$	$\sigma_{\rm EW}^{\rm SM~\prime}(\Delta_{\rm EW}^{\rm SM~\prime})$	$\sigma^{\rm SM}_{\gamma-\rm induced}(\Delta^{\rm SM}_{\gamma})$	$\sigma_{\rm EW}^{\rm SM}(\Delta_{\rm EW}^{\rm SM})$
SM	Zh	0.6140 (-4.92%)	$- O(10^{-5})$	0.6139 (-4.93%)	0.6915 (-4.93%)	$- O(10^{-5})$	0.6814 (-4.94%)
	W^-h	0.4304 (-6.40%)	0.02080 (4.52%)	0.4512 (-1.87%)	0.4798 (-6.42%)	0.02430 (4.74%)	0.5041 (-1.69%)
	W^+h	0.6802 (-6.56%)	0.03251 (4.47%)	0.7127 (-2.10%)	0.7484 (-6.58%)	0.03755 (4.69%)	0.7860 (-1.89%)

	$P_T^W = 20 \text{ GeV}$	$P_T^W = 100 \text{ GeV}$	$P_T^W = 200 \text{ GeV}$	$P_T^W = 240 \text{ GeV}$
W^-h	$\sim 4.5\%$	$\sim 2.3\%$	$\sim 0.9\%$	$\sim 0.7\%$
W^+h	$\sim 4.5\%$	$\sim 2.3\%$	$\sim 1\%$	$\sim 0.8\%$

Table: The results of NLO EW corrections.

3 = 1 = 0 Q (~

Numerical results \hookrightarrow Results of γ -induced

The K-factor for new physics corrections

$$\delta = \frac{\sigma_{IDM}^{NLO} - \sigma_{SM}^{NLO}}{\sigma_{SM}^{LO}} \times 100\% = \frac{\sigma_{IDM}^{virt-EW} - \sigma_{SM}^{virt-EW}}{\sigma_{SM}^{LO}} \times 100\%.$$

• $M_X = M_A = M_{H^{\pm}} = M_S$, full degenerate masses of new scalars

• $\Delta M = M_A - M_X = 100$ GeV with $M_A = M_{H^{\pm}}$, X is lightest neutral scalar

• The results of NLO corrections, scale dependence and distributions for BP0, BP1 and BP2

14 TeV	$pp \rightarrow Vh$	$\sigma_{ m LO}~(m pb)$	$\Delta_{EW}(\%)$	$\delta(\%)$
	Zh	0.7168(2)	-10.8	-5.81
BP0	W^-h	0.5127(3)	-7.44	-5.76
	W^+h	0.8011(5)	-7.65	-5.76
BP1	Zh	0.7168(2)	-7.21	-2.27
	W^-h	0.5127(3)	-3.90	-2.23
	W^+h	0.8011(5)	-4.12	-2.23
	Zh	0.7168(2)	-6.47	-1.52
BP2	W^-h	0.5127(3)	-3.14	-1.47
	W^+h	0.8011(5)	-3.35	-1.46

The results with the DM constraints(BP3-5):

14 TeV	$pp \rightarrow Vh$	$\sigma_{\rm EW}^{\rm IDM}({\rm pb})$	$\sigma_{\rm NLO}^{\rm IDM}$ (pb)	$\Delta_{EW}(\%)$	$\delta(\%)$
BP3	Zh	0.6819(2)	0.8516(4)	-4.87	0.07
	W^-h	0.5051(1)	0.5850(2)	-1.48	0.20
	W^+h	0.7875(2)	0.9179(5)	-1.70	0.19
BP4	Zh	0.6814(2)	0.8510(4)	-4.95	$\mathcal{O}(10^{-3})$
	W^-h	0.5059(1)	0.5857(2)	-1.33	0.35
	W^+h	0.7887(2)	0.9191(5)	-1.55	0.34
BP5	Zh	0.6814(2)	0.8510(4)	-4.95	- $\mathcal{O}(10^{-3})$
	W^-h	0.5041(1)	0.5840(2)	-1.68	$-{\cal O}(10^{-3})$
	W^+h	0.7859(2)	0.9164(5)	-1.89	$-{\cal O}(10^{-3})$

New Physics (δ) smaller than PDFs uncertainty ($\sim 2\%$)

- The DS and TCPSS have been implemented in SloopS Framework.
- The γ -induced has a significant contribution for *Wh* production.
- In the Higgs-strahlung process, the IDM has a significant new physics effects for collider, but we need more depth exploration for DM.
- Outlook
 - Calculating the NLO corrections for the new scalars pair productions at LHC, especially for H^+H^- .
 - We are planning a full automation for BSM NLO calculations SloopS.

Thanks

N. G. Deshpande and E. Ma, Phys. Rev. D 18 (1978), 2574 doi:10.1103/PhysRevD.18.2574

M. L. Ciccolini, S. Dittmaier and M. Kramer, Phys. Rev. D 68 (2003), 073003 doi:10.1103/PhysRevD.68.073003 [arXiv:hep-ph/0306234 [hep-ph]].

A. Denner, Fortsch. Phys. 41 (1993), 307-420 doi:10.1002/prop.2190410402 [arXiv:0709.1075 [hep-ph]].

B. W. Harris and J. F. Owens, Phys. Rev. D **65** (2002), 094032 doi:10.1103/PhysRevD.65.094032 [arXiv:hep-ph/0102128 [hep-ph]].

S. Catani and M. H. Seymour, Phys. Lett. B **378** (1996), 287-301 doi:10.1016/0370-2693(96)00425-X [arXiv:hep-ph/9602277 [hep-ph]].

J. Baglio, C. Duhr, B. Mistlberger and R. Szafron, JHEP **12** (2022), 066 doi:10.1007/JHEP12(2022)066 [arXiv:2209.06138 [hep-ph]].

Backup \hookrightarrow Dipole subtraction(DS) [Catani:1996jh]

For the radiation processes, the NLO cross section

$$\begin{aligned} {}_{\text{IR-Finite}}^{\text{DS}} &= \sigma_R + \sigma_V = \int_3 \underbrace{\left[d\sigma_R - d\sigma^A \right]}_{d\sigma_{\text{Dipole}}} + \int_2 \left[d\sigma_V + \underbrace{\int_1 d\sigma^A}_{d\sigma_{\text{IntDipole}}} \right] \\ &= \left[\sigma_V(\frac{1}{\epsilon_{\text{IR}}}, \frac{1}{\epsilon_{\text{IR}}^2}) + \sigma_{\text{IntDipole}}(\alpha', \frac{1}{\epsilon_{\text{IR}}}, \frac{1}{\epsilon_{\text{IR}}^2}) \right] + \sigma_{\text{Dipole}}(\alpha'). \end{aligned}$$
(3)

dσ^A works as a local counterterm, implying that the subtraction occurs at the amplitude squared level.

0

$$d\sigma^A = \sum_{
m dipoles} d\sigma^0 \otimes dV_{
m dipole}.$$

The dV_{dipole} are dipole factors which are independent of process, while depend on the types of splitting.

Backup → Two cutoff phase space slicing(TCPSS) [Harris:2001sx]

Cuts : δ_s and δ_c

• Soft Region: $0 < E_{\gamma} < E_{\min} = \delta_s \sqrt{s}/2$

$$d\sigma_{\rm S} = d\sigma^0 \times \delta_{\rm soft} \sim \frac{1}{\epsilon_{IR}^2} + \frac{1}{\epsilon_{IR}} + \text{Finite} + \mathcal{O}(\epsilon_{IR})$$

- HC: E_γ > E_{min}, (s₁₅, s₂₅) < δ_cs; s_{ij} = (p_i + p_j)² In this region, the collinear singularities are absorbed into PDFs.
- HC: E_γ > E_{min}, (s₁₅, s₂₅) > δ_cs Making Monte-Carlo integration in d = 4, directly.

Slicing the phase space by two cuts (δ_s , δ_c)

$$\sigma_{\text{IR-Finite}}^{\text{TCPSS}} = \sigma_{\text{V}}(\frac{1}{\epsilon_{\text{IR}}}, \frac{1}{\epsilon_{\text{IR}}^2}) + \sigma_{\text{S}}(\delta_s, \frac{1}{\epsilon_{\text{IR}}}, \frac{1}{\epsilon_{\text{IR}}^2}) + \sigma_{\text{coll}}(\delta_s, \delta_c, \frac{1}{\epsilon_{\text{IR}}}) + \sigma_{\text{H}\overline{\text{C}}}(\delta_s, \delta_c)$$

문 문

Backup \hookrightarrow Special case in IDM

The γ -induced contributions for production of charged Higgs pair:

There are two splitting types and born process

• 1):
$$\gamma \rightarrow q + q$$
; $qq \rightarrow H^{\pm}H^{\mp}$

• 2): $q \rightarrow \gamma + q$; $\gamma \gamma \rightarrow H^{\pm}H^{\mp}$

The counter term $d\sigma^A$ in DS scheme

$$d\sigma^{A} = d\sigma_{qq \to H^{\pm}H^{\mp}}(p^{2}) \cdot V_{\gamma \to q+q}(p^{2}) + d\sigma_{\gamma\gamma \to H^{\pm}H^{\mp}}(g^{\mu\nu}, p^{\mu}p^{\nu}) \cdot V_{q \to \gamma+q}(g^{\mu\nu}, p^{\mu}p^{\nu})$$