Probing top Yukawa coupling at the LHC via associated production of single top and Higgs

Ya-Juan Zheng (Iwate University) 岩手大学

Higgs 2023

December 1, 2023

Based on

[1] Vernon Barger, Kaoru Hagiwara, and YJZ, PRD99(2019)031701 [arXiv:1807.00281]
[2] Vernon Barger, Kaoru Hagiwara, and YJZ, JHEP09(2020)101 [arXiv:1912.11795].
[3] YJZ, work in progress

Outline

- Top Higgs Yukawa couplings with CP violation
- Helicity amplitudes: ub > dth and $\overline{db} > \overline{u}th$ for pp>t+h+j

 $d\overline{b} > u\overline{t}h$ and $\overline{u}\overline{b} > d\overline{t}h$ for $pp>\overline{t}+h+j$

- Single top/anti-top + Higgs event distributions
- Azymuthal asymmetry Aq $(\overline{A}q)$ in pp > t+h+j $(\overline{t}+h+j)$ events
- Top (anti-top) polarisation P_2 (\overline{P}_2) in pp > t+h+j (\overline{t} +h+j) events
- Summary

LHC searches and Constraints

Top Yukawa coupling

kappa framework

$$\begin{aligned} \mathcal{L} &= -g_{htt} h \bar{t} \left(\cos \xi_{htt} + i \sin \xi_{htt} \gamma_5 \right) t \\ &= -g_{htt} h (t_R^{\dagger}, t_L^{\dagger}) \begin{pmatrix} e^{-i\xi_{htt}} & 0 \\ 0 & e^{i\xi_{htt}} \end{pmatrix} \begin{pmatrix} t_L \\ t_R \end{pmatrix} \\ &= -g_{htt} h (e^{-i\xi_{htt}} t_R^{\dagger} t_L + e^{i\xi_{htt}} t_L^{\dagger} t_R) \\ g_{htt} &= \frac{m_t}{v} \kappa_{htt}, \quad \kappa_{htt} > 0, \quad -\pi < \xi_{htt} \le \pi \end{aligned}$$

Gauge invariant Lagrangian with dimension six operator in SMEFT:

$$\mathcal{L} = -y_{\rm SM}Q^{\dagger}\phi t_R + \frac{\lambda}{\Lambda^2}Q^{\dagger}\phi t_R \left(\phi^{\dagger}\phi - \frac{v^2}{2}\right) + \text{h.c.}$$
$$Q = (t_L, b_L)^T$$
$$\phi = ((v + H + i\pi^0)/\sqrt{2}.i\pi^{-})^T$$
$$g_{\rm SM} = \frac{y_{\rm SM}}{\sqrt{2}} = \frac{m_t}{v} \qquad g_{\rm SM} - ge^{i\xi} = \frac{\lambda v^2}{\sqrt{2}\Lambda^2}$$

$$pp \rightarrow th + \bar{t}h + \text{anything}$$

 $\sigma_{tot}(|\xi_{htt}| = \pi) \sim 13 \sigma_{tot}^{SM}(\xi_{htt} = 0)$

change the sign of Yukawa couplin

In the SM, strong destructive interference between the htt unitarity and hWW amplitudes.

W.Stirling, D.Summers, Phys.Lett.B283(1992)411-415 G.Bordes,B.van Eijk, Phys.Lett.B299(1993)315-320

ub > dth amplitudes

Amplitudes (full process u b > d t h)

$$\begin{split} M_{\sigma} &= \sum_{\lambda = \pm 1,0} j(u \to dW_{\lambda}^{+}) \ \hat{M}(W_{\lambda}^{+}b \to t_{\sigma}h) \\ M_{+} &= \boxed{\frac{1-\tilde{c}}{2}e^{i\phi}} \sin \frac{\theta^{*}}{2} A \frac{1+\cos\theta^{*}}{2} \\ &+ \frac{1+\tilde{c}}{2}e^{-i\phi} \sin \frac{\theta^{*}}{2} \left[A \left(\frac{1+\cos\theta^{*}}{2} + \epsilon_{1} \right) - \boxed{B\left(e^{-i\xi} + \delta\delta'e^{i\xi}\right)} \right] \\ &+ \frac{\tilde{s}}{2}\cos \frac{\theta^{*}}{2} \frac{W}{Q} \left[A \left(\frac{q^{*}E_{h}^{*} + q^{0*}p^{*}\cos\theta^{*}}{Wp^{*}} + \epsilon_{1} \right) - \boxed{B\left(e^{-i\xi} + \delta\delta'e^{i\xi}\right)} \right] \\ &- \frac{1-\tilde{c}}{2}e^{i\phi}\cos \frac{\theta^{*}}{2} A\delta \frac{1-\cos\theta^{*}}{2} \\ &- \frac{1+\tilde{c}}{2}e^{-i\phi}\cos \frac{\theta^{*}}{2} \left[A \left(\delta \frac{1-\cos\theta^{*}}{2} - \epsilon_{2} \right) + \boxed{B\left(\delta e^{-i\xi} + \delta'e^{i\xi}\right)} \right] \\ &- \frac{\tilde{s}}{2}\sin \frac{\theta^{*}}{2} \frac{W}{Q} \left[A \left(\delta \frac{q^{*}E_{h}^{*} + q^{0*}p^{*}\cos\theta^{*}}{Wp^{*}} + \epsilon_{2} \right) - \boxed{B\left(\delta e^{-i\xi} + \delta'e^{i\xi}\right)} \right] \\ &- \frac{\lambda = 0}{J_{Z} = 1/2} \\ &- \frac{\tilde{s}}{2}\sin \frac{\theta^{*}}{2} \frac{W}{Q} \left[A \left(\delta \frac{q^{*}E_{h}^{*} + q^{0*}p^{*}\cos\theta^{*}}{Wp^{*}} + \epsilon_{2} \right) - \boxed{B\left(\delta e^{-i\xi} + \delta'e^{i\xi}\right)} \right] \\ &- \frac{\lambda = 0}{J_{Z} = 1/2} \\ &- \frac{\lambda = 0}{$$

Q and **W** distribution

 $Q = \sqrt{-q^2}$ invariant momentum transfer of the virtual W⁺ $W = \sqrt{P_{th}^2} = m(th)$ the invariant mass of the th system

 W_{L} is dominant in low Q (Q<100 GeV) and large W (W>400 GeV) W_{T} is significant in large Q (Q>100 GeV) and small W (W<400 GeV)

Azimuthal angle distribution

FIG. 8: Left panel: t. Right panel: \bar{t} . $d\sigma/dW/d\phi$ v.s. ϕ at W = 400 and 600 GeV for Q > 100 GeV. Black, red and green curves are for the SM ($\xi = 0$), $\xi = \pm 0.1\pi$, and $\pm 0.2\pi$. The solid curve are for $\xi \ge 0$, while the dashed curves are for $\xi < 0$.

asymmetry
$$A_{\phi}(\mathbb{W}) = \frac{\int_{-\pi}^{\pi} d\phi \, \operatorname{sgn}(\phi) d\sigma / d\mathbb{W} / d\phi}{d\sigma / d\mathbb{W}} \qquad > 0 \, (th) \text{ and } < 0 \, (\bar{t}h) \quad \text{for } \xi > 0$$
$$< 0 \, (th) \text{ and } > 0 \, (\bar{t}h) \quad \text{for } \xi < 0$$

Asymmetry is large at small W & large Q (W_T is comparable to W_L) small at large W & small $^{\circ}Q$ (W_L dominates over W_T)

Azimuthal asymmetry A_{ϕ}

FIG. 11: Asymmetry $A_{\phi}(W)$ for $pp \to thj$ and $pp \to \bar{t}hj$ as functions of W, the invariant mass of th or $\bar{t}h$ system. Large Q (Q > 100 GeV) events are shown by solid lines, while small Q (Q < 100)GeV, events are shown by dashed curves. Results are shown for $\xi = 0$ (SM), $\xi = 0.05\pi$ (red) and 0.1π (green). $A_{\phi} > 0$ for th and $A_{\phi} < 0$ for $\bar{t}h$, when $\xi > 0$.

$|\mathbf{M}_{+}(\mathbf{ub} > \mathbf{dth})|^{2} v.s. |\mathbf{M}_{-}(\mathbf{db} > \mathbf{uth})|^{2}$

$$+\frac{1+\tilde{c}}{2}e^{-i\phi}\sin\frac{\theta^{*}}{2}\left[\left(\frac{1+\cos\theta^{*}}{4}\bar{\beta}+\epsilon\delta\delta'\right)A-\left(e^{-i\xi}+\delta\delta'e^{i\xi}\right)B\right]\quad \begin{array}{c}\mathsf{J}_{\mathsf{Z}=-1/2}\\ \mathtt{X}_{\mathsf{Z}=-1}\end{array}$$

$$+\frac{\tilde{s}}{2} \frac{\mathbb{W}}{Q} \cos \frac{\theta^*}{2} \left[\left(\frac{q^* E_h^* + q^{0*} p^* \cos \theta^*}{\mathbb{W}^2} + \epsilon \delta \delta' \right) A - \left(e^{-i\xi} + \delta \delta' e^{i\xi} \right) B \right]_{\lambda=0}^{\mathsf{J}_{\mathsf{Z}}=1/2} \frac{\mathbb{V}_{\mathsf{Z}}}{\mathbb{W}^2}$$

$$\begin{split} \overline{\mathcal{M}}_{-} &= \frac{1-\tilde{c}}{2} e^{i\phi} \sin \frac{\theta^{*}}{2} \left[\left(\frac{1+\cos\theta^{*}}{4} \bar{\beta} + \epsilon \delta \delta' \right) A - \left(e^{i\xi} + \delta \delta' e^{-i\xi} \right) B \right] & \stackrel{\text{Jz=1/2}}{\stackrel{\chi=+1}$$

Top Polarization (mixed state)

For general mixed state, we introduce differential cross section matrix

$$d\sigma_{\lambda\lambda'} = \int dx_1 \int dx_2 D_{u/p}(x_1) D_{b/p}(x_2) \frac{1}{2\hat{s}} \overline{\sum} M_\lambda M_{\lambda'}^* d\Phi_{dth}$$

where the phase space integration can be restricted. For an arbitrary kinematical distributions, $d\sigma = d\sigma_{++} + d\sigma_{--}$, the polarisation density matrix is defined as

$$\rho_{\lambda\lambda'} = \frac{d\sigma_{\lambda\lambda'}}{d\sigma_{++} + d\sigma_{--}} = \frac{1}{2} \left[\delta_{\lambda\lambda'} + \sum_{k=1}^{3} P_k \sigma_{\lambda\lambda'}^k \right]$$

The 3-vector $\mathbf{P} = (P_1, P_2, P_3)$ gives the general polarisation of the top quark. The magnitude $P = |\mathbf{P}|$ gives the degree of polarisation (P=1 for 100% polarization, P=0 for no polarisation). The orientation gives the direction of the top quark spin in the top rest frame. $P_2 = -2 \text{Im}(M_+ M_-^*)/(|M_+|^2 + |M_-|^2)$

We find **P** lies in the W+b>th scattering plane in the SM (xi=0). Polarisation orthogonal to the production plane P_2 appears for nonzero xi. The sign of P_2 determines the sign of xi.

Top Polarization and anti-top polarisation $P = (P_1, P_2, P_3)$

We find large $|P_2|$ when $\cos e^* < 0$, positive for t and negative for tbar. We therefore examine P_2 for events with $\cos e^* < 0$ in the next slides.

Polarization P_2 of top and anti-top

FIG. 15: P_2 v.s. W for $pp \to thj$ (a) and $pp \to \bar{t}hj$ (b) in the region $-1 < \cos \theta^* < 0$. The green curves are for $\xi = 0.1\pi$, while the red curves are for $\xi = 0.05\pi$. The sold curves are for Q > 100 GeV, while the dashed curves are for Q < 100 GeV.

$$pp \to thj \quad (ub \to dth) \qquad \mathbf{CP} \qquad \bar{p}\bar{p} \to \bar{t}hj \quad (\bar{u}b \to d\bar{t}h)$$

In thj and $\bar{t}hj$ production at the LHC, longitudinal contributions (W[±](λ =0)) dominate
 $W^+(\lambda = 0) + b \to t + h$
$$\mathbf{CP} \qquad W^-(\lambda = 0) + \bar{b} \to \bar{t} + h$$

Expected number of events @ HL-LHC

	\sqrt{s}	Number of events	Decay channel	Branching Ratio	Number of events	
	14 TeV	$@3ab^{-1}$				
$\sigma(th){+}\sigma(ar{t}h)$	90 fb	270,000	$(b\ell u)(bar{b})$	0.13	34,000	√ √
			$(b\ell u)(\gamma\gamma,\ell\ell jj,\mu\mu,4\ell)$	0.0011	300	$\checkmark\checkmark$
$\sigma(tar{t}h)$	613 fb	1,840,000	$(bl u)(bjj)(bar{b})$	0.17	310,000	√√√
			$(bl u)^2(bar{b})$	0.028	52,000	√√
			$(bl u)(bjj)(\gamma\gamma,\ell\ell jj,\mu\mu,4\ell)$	0.0015	2,800	√ √ √
			$(bl u)^2(\gamma\gamma,\ell\ell jj,\mu\mu,4\ell)$	0.00025	460	$\checkmark \checkmark \checkmark \checkmark$

- •t>blv mode for CP sensitivity (t vs. \overline{t})
- •h decay should not have neutrinos to determine t(t) frame.

	Decay channel	Branching ratio		Decay channel	Branching Ratio	
$t \rightarrow$	bjj	0.67	$h \rightarrow$	$b\bar{b}$	0.58	
	$b\ell u(\ell=e,\mu)$	0.22		$\ell ar{\ell} j j$	0.0025	
	bτν 🗸	0.11		$\gamma\gamma$	0.0023	
				$\mu \bar{\mu}$	0.00022	0.0051
				4ℓ	0.00012	

•For a few percent asymmetry measurement, h> bb is necessary

Summary

- Single top+Higgs production is an ideal probe of the top Yukawa coupling because the htt and hWW amplitudes interfere strongly.
- Azimuthal asymmetry between the u>dW⁺ emission and the W⁺b>th production planes probes the sign of CP violating phase.

$$A_{\phi} \sim \int_{0}^{\pi} (|M_{+}|^{2} + |M_{-}|^{2}) d\phi - \int_{-\pi}^{0} (|M_{+}|^{2} + |M_{-}|^{2}) d\phi \propto \sin \xi_{htt}$$

• Polarization can be measured by using the density matrix.

$$\rho_{\lambda\lambda'} = \frac{1}{\int (|M_+|^2 + |M_-|^2) d\Phi} \int \begin{pmatrix} |M_+|^2 & M_+M_-^* \\ M_-M_+^* & |M_-|^2 \end{pmatrix} d\Phi = \frac{1}{2} \left[\delta_{\lambda\lambda'} + \sum_{k=1}^3 P_k \sigma_{\lambda\lambda'}^k \right]$$

• Polarization perpendicular to the scattering plane measures the relative phase between the two helicity amplitudes

$$P_2 = \frac{-2\mathrm{Im}(M_+M_-^*)}{|M_+|^2 + |M_-|^2} \propto \sin\xi_{htt}$$

We find significant asymmetry reaching Ap ~+8%(th),-10%(th), whereas P2~+18% (th), -15% (th) for xi=0.1pi. All the asymmetries change sign if xi is negative.

WATE COLUDER SCHOOL 26 FEBRUARY - 2 MARCH, 2024 Appi highland, Iwate, Japan

0

Registration fee

FREE and local expenses will be supported. (No support for travel fees.)

Eligibility

Mainly for graduate students and postdoc fellows (Max. 25 participants in person)

Venue

ANA Crowne Plaza Resort Appi Kogen

Application submission deadline 8 December, 2023

Website https://ics.sgk.iwate-u.ac.jp/

Contact ics2024@iwate-u.ac.jp

Overview

Students will learn a variety of topics in collider physics via lectures and tutorials. Long lunch break for skiing and discussions are planned.

Lecturers:

Celine Degrande (Louvain, Belgium) Rikkert Frederix (Lund, Sweden) Fabio Maltoni (Louvain, Belgium) Olivier Mattelaer (Louvain, Belgium) Marco Zaro (Milan, Italy) etc.

Organizers:

Kaoru Hagiwara (KEK) Daniel Jeans (KEK) Fabio Maltoni (UC Louvain / Bologna) Kentarou Mawatari (Chair, Iwate U.) Shinya Narita (Iwate U.) Yajuan Zheng (Iwate U.)