Search for a standard model-like Higgs boson in the mass range 70 to 110 GeV in the diphoton final state at CMS

Muhammad Aamir Shahzad (IHEP/CAS)

On behalf of the CMS Collaboration

中國科學院高能物理研究所 Institute of High Energy Physics Chinese Academy of Sciences

Higgs 2023, 27 Nov. - 01 Dec.

Institute of High Energy Physics, CAS, Beijing, China 28.Nov.2023

- Motivations and previous experimental searches (low-mass)
- Analysis strategy
- Signal and Background modelling
- Full Run 2 results
- Summary

Results are based on <u>CMS-PAS-HIG-20-002</u>

Motivations and previous experimental searches

- Many BSM theories (e.g. 2HDM, Composite Higgs) predict an extended sector with a boson mass < 125 GeV</p>
- A small excess of events (~2 σ) w.r.t. background was observed at LEP.

 We have performed LM Hγγ search since Run 1 at CMS

p-value

Local

- 13 TeV 2016 (35.9 fb⁻¹) + 8 TeV 2012 (19.7 fb⁻¹): HIG-17-013
 - ✓ 8 TeV+13 TeV: 2.8σ local
 (1.3σ global) significance at
 m=95.3 GeV

PoS CHARGED2018 (2019) 016 DOI: <u>10.22323/1.339.0016</u>

ATLAS-CONF-2018-025 (2016+2017) CMS-HIG-17-013 (2012+2016)

SM-like low mass Hyy search

- Hγγ decay channel provide a clean final-state topology which allows the mass of a Higgs boson to be reconstructed with High precision(1-2%)
 - ✓ Challenges: Significant background including continuum $\gamma\gamma$ (irreducible) and fakes from γ +jet and jet+jet (reducible) and relic Z→ee background
- Production modes: ggH, VBF, associated production with a W or Z boson (VH), ttH
- >Data samples: 132.2 fb⁻¹ Run 2 data
- Signal search region: 70-110 GeV and background fitting range 65-120 GeV

Analysis strategy

Strategy: Extraction of signal peak through fit of diphoton invariant mass spectrum for each event class

> Background components: Irreducible direct QCD production, reducible γ +jet and jet+jet processes and Z→ee component

Analysis inherits many elements from the 125 GeV H→γγ analysis: Photon reconstruction and correction, Vertex ID, Signal and background modeling techniques

Dedicated updates and optimizations: HLT paths, preselections, DY suppression strategy, retrained Photon ID MVA and di-photon BDT, Dijet and Combined (dijet+diphoton) MVA's retrained for VBF tagged events (2017/2018)

Analysis strategy (cont...)

Signal mass reconstruction:

- Reconstruct two photons with precise photon energy
- ✓ MVA is used to select the vertex and to estimate the probability that it is the correct one (inherited from 125 GeV H $\gamma\gamma$ analysis)
- **Background suppression:** "Photon IDMVA" retrained with "LM samples" (γ+jets)
 - ✓ Validated data/MC, with diphoton $Z \rightarrow ee$, $Z \rightarrow \mu \mu \gamma$
- **Retrained Di-photon BDT:** based on LM samples and kinematics including mass resolution
 - \checkmark validated with Z \rightarrow ee, diphoton data/MC

Analysis strategy (cont...)

- To deal with DY bkg., updated strategy is used
 - ✓ Electron-veto without pixel detector hits was used in previous published 2016+2012 paper
 - $\sqrt{\ln(\Sigma p_T^2/\text{GeV}^2)}$ production as function of $p_T^{\gamma\gamma}$ (GeV): optimized cut with $\ln(\Sigma p_T^2) < 0.016 p_T^{\gamma\gamma} + 6$
- Dijet and Combined (dijet + di-photon) MVA's were retrained with LM samples for VBF class, and validated with $Z \rightarrow ee$, di-photon data/MC
- \blacktriangleright Event categorization:
 - ✓ 2016: 3 untagged event (re-categorized) classes based on LM retrained diphoton BDT with legacy data
 - ✓ 2017 & 2018: 3 untagged event classes based on diphoton BDT, 1 VBF tagged event class based on the combined MVA

CMS-PAS-HIG-20-002 supplementary

Signal modeling

- \succ A parametric model is used to describe the shape of the signal in each event class
- \geq All production modes (ggH, VBF, WH, ZH, ttH) from 70 GeV to 110 GeV with a 5 GeV granularity are used
- > The final parametrized signal shape for the combination of all production modes for all event classes, is weighted by their SM-like BSM cross sections
- > Full parameterized signal shape, integrated over all event classes, in simulated signal events with $m_{H} = 90 \text{ GeV}$

All classes combined

Background modeling

- Relic DY contribution fitted by a double-sided Crystal Ball (DCB) function + an exponential: (1.0-frac)*DCB(x) + frac*exp(p1*x)
- ➢Continuum background using Envelope (discrete profiling method) method by performing fit with four analytic function families (Power law, Exponential, Laurent, **Bernstein**)
 - ✓ Built directly from data using the diphoton mass spectrum (65-120GeV) in each event class

CMS-PAS-HIG-20-002

Mass distributions

> Events in all classes of the combined 13 TeV data set, S+B fit for m_{H} =95.4 GeV

Results: Inclusive Limits (Full Run 2)

 \blacktriangleright Observed absolute 95% CL UL on σ X B between 15-73 fb (22-53 fb expected)

Observed: Worst: 73 fb @ 95.4 GeV Best: 15 fb @ 108.9 GeV

\succ Previous 2016 results (HIG-17-013): 26-161 fb (obs.) 37-110 fb(exp.)

PLB 793 (2019) 320-347

Results: P-values or Significances (Full Run 2)

> Observed local p-values for 2016/2017/2018

-HIG-20-002

S

CMS-PA

 \blacktriangleright Modest excess with ~2.9 σ local (1.3 σ global) significance at $m_{\gamma\gamma}$ =95.4 GeV, need more data to conclude!

2012+2016 data

PLB 793 (2019) 320-347

Results: Limits by production mode (Full Run 2)

 \triangleright Observed and expected 95% CL limits on σ X B by **production process** (all event classes combined)

ggH+ttH

✓ 100% production via gluon-induced processes (ggH, ttbarH SM in proportions) 17-83 fb observed

VBF+VH

132.2 fb⁻¹ (13 TeV) CMS Preliminary (qd) $H \rightarrow \gamma \gamma$ d) 0.045 10%56 لل 0.035 Observed VBF + VH Expected $\pm 1\sigma$ Expected ± 2a B(H 0.03 0.025 × HA 0.02 0.01 0.005 75 80 85 90 95 100 105 110 70 m_u (GeV)

✓ 100% production via fermion-induced processes (VBF, VH in SM proportions) 7-29 fb observed

VBF

• 100% production via **VBF,** 5-17 fb observed

CMS-PAS-HIG-20-002

 100% production via VH, 13-51 fb observed

VH

Signal Strengths (µ)

 m_h fixed to max. significance value of 2016+2017+2018 (95.4 GeV)

<u>CMS-PAS-HIG-20-002</u> supplementary

Summary

- Results of search for a standard model-like Higgs boson in the mass range between 70 and 110 GeV in the diphoton final state at 13 TeV with full Run 2 data has been presented
- >No hint for the existence of new Higgs boson so far. The maximum local significance corresponds to 2.9σ at 95.4 GeV for all production mechanisms and event classes combined (1.3 σ global significance)
- \succ Signal strengths at 95.4 GeV are compatible among 2016, 2017, 2018 and for all the event classes in 2016, 2017 and 2018.
- > First search for a new diphoton resonance in this mass range with full Run 2 data
- \succ More data is needed to conclude the nature of excess. Run 3 analysis is on its way. Stay tuned...!

(credit event display: Tom McCauley)

Thanks for your attention...!

CMS Experiment at the LHC, CERN Data recorded: 2018-Oct-03 11:26:05.236800 GMT Run / Event / LS: 323954 / 100651384 / 51

Signal Modelling (Cont...)

SM cross sections

hypothesis)

offline selections etc

> The final parametrized signal shape for the combination of all production modes for all event classes, is weighted by their

Signal efficiency x acceptance used for **signal normalization** ($\sigma \times BR$ from SM

\blacktriangleright Different selections for 3 years i.e. trigger,

Signal parametrization

- > A parametric model is used to describe the shape of the signal in each event class
- \succ Same as the standard H $\rightarrow \gamma\gamma$ analysis method: Simultaneous Signal Fitting
- All production modes (ggH, VBF, WH, ZH, ttH) from 70 GeV to 110 GeV with a 5 GeV granularity are used
- The final parametrized signal shape for the combination of all production modes for all event classes, is weighted by their SM-like **BSM cross sections**
- Full parameterized signal shape, integrated over all event classes, in simulated signal events with $m_{H} = 90 \text{ GeV}$

Background modeling

Best-fit functions: "DCB+exponential" fractions (0.5% - 4.8%) in 85 to 95 GeV mass range

Event class		0	1	2	VBF
2016	Family/Order	Power Law 1	Bernstein 4	Exponential 3	
	DCB + Exp. Fraction (%)	3.0	3.1	3.3	
2017	Family/Order	Bernstein 3	Exponential 3	Bernstein 4	Bernstein 3
	DCB + Exp. Fraction (%)	2.7	1.4	1.9	2.6
2018	Family/Order	Laurent 1	Bernstein 4	Exponential 3	Bernstein 2
	DCB + Exp. Fraction (%)	0.5	4.1	4.8	0.8

Systematic uncertainties

Uncertainties evaluated at the per-event level:

- ✓ Total integrated luminosity
- ✓ 2016 and 2017 pre-firing
- Underlying event and parton shower
- 2018 HEM issue \checkmark
- ✓ 2017 and 2018, VBF additional jet radiation issue
- ✓ Linear cut SF

> Uncertainties evaluated at the per-photon level:

- ✓ Shape of the photon identification BDT distribution
- Photon energy scale and resolution \checkmark
- **Trigger efficiencies SF** \checkmark
- Preselection SF
- Electron veto SF and N_{MatchedEle}=0 SF \checkmark
- Minimum photon identification BDT \checkmark
- Non-uniformity of light collection (FNUF) \checkmark
- Photon energy scale non-linearity \checkmark
- ✓ Vertex selection uncertainty

Dedicated systematics have been added for VBF class:

- ✓ PUJID
- ✓ Tight Jet ID

> Theoretical uncertainties:

✓ PDF uncertainty ✓ QCD scale and strong coupling strength (α_s) uncertainty Cross-section uncertainties (for normalized limit and p-value)

 \checkmark jet energy correction and resolution,

> Major systematic uncertainties: per-photon energy resolution <20%, renormalization and factorization scales<14%, UE modeling <27%, PS<16%, JES corrections (VBF class) <16%.

Signal yields and Bkg. events

Table 2: The expected number of SM-like Higgs boson signal events ($m_{\rm H} = 90 \,{\rm GeV}$) per event class and the corresponding percentage breakdown per production process, for the 2016, 2017 and 2018 data. The values of $\sigma_{\rm eff}$ and $\sigma_{\rm HM}$ are also shown, along with the number of background events ("Bkg.") per GeV estimated from the background-only fit to the data, that includes the number, shown separately, from the Drell–Yan process ("DY Bkg."), in a $\sigma_{\rm eff}$ window centered on $m_{\rm H} = 90 \,{\rm GeV}$.

		Expected SM-like Higgs boson signal yield ($m_{\rm H} = 90 \text{GeV}$)							Bkg.	DY Bkg.	
Event classes		Total	ggH	VBF	WH	ZH	tŦH	$\sigma_{\rm eff}$	$\sigma_{\rm HM}$	(GeV^{-1})	(GeV^{-1})
			(%)	(%)	(%)	(%)	(%)	(GeV)	(GeV)		
2016	0	130	71.9	15.6	6.2	3.6	2.6	1.12	1.00	271	12
36.3 fb ⁻¹	1	304	87.4	6.6	3.6	2.1	0.3	1.25	1.07	3093	33
	2	407	94.7	2.5	1.7	1.0	0.1	1.87	1.51	9190	193
	Total	842	88.5	6.0	3.1	1.8	0.6	1.50	1.20	12554	239
2017	0	104	73.4	11.6	7.5	4.3	3.2	1.27	1.13	248	7
$41.5 {\rm fb}^{-1}$	1	347	88.5	5.6	3.5	2.1	0.3	1.40	1.24	3625	83
	2	413	94.4	2.6	1.9	1.1	0.1	1.91	1.64	8169	244
	VBF	26	45.6	51.8	1.0	0.5	1.0	1.33	1.15	29	1
	Total	890	88.2	6.2	3.1	1.8	0.6	1.60	1.35	12 071	338
2018	0	162	75.1	10.2	7.3	4.3	3.0	1.21	1.05	430	3
$54.4{ m fb}^{-1}$	1	585	90.1	4.8	3.1	1.8	0.2	1.34	1.17	6445	378
	2	473	94.4	2.5	1.9	1.2	0.1	2.01	1.73	10 982	720
	VBF	38	45.4	51.9	1.1	0.6	1.0	1.21	1.03	46	1
	Total	1258	88.4	6.1	3.1	1.8	0.6	1.54	1.27	17 902	1104

Results: Limits each year

CMS-PAS-HIG-20-002 supplementary

2018

Comparison with ATLAS

