# Higgs decay to quarkonia and the Yukawa couplings

Yang Ma

INFN Bologna

November 28, 2023 Higgs 2023, IHEP



Theory and Phenomenology of Fundamental Interactions

INIVERSITY AND INFN BOLOGNA



#### Background ●○○

Quarkonia production via Higgs decay

Probe the Yukawa couplings

Summary and prospects O

# Why Higgs?

#### A well understood and well tested model



#### Standard Model of Elementary Particles

- Model doesn't make sense without Higgs or something like it
- The Higgs is a scalar particle whose interactions with other particles are predicted in terms of the Higgs mass
- It provides masses to all other elementary particles

Higgs physics: A portal to new physics

- ► LHC has gone from discovery to precision
- A telescope to high scale physics
- Interplay of theory and experiment is important

Probe the Yukawa couplings

Summary and prospects O

## Measure the Higgs couplings





[Nature 607 (2022) 60]

Higgs to light fermion couplings are to be measured  $\Rightarrow$  The next task is the 2nd generation

INFN

# Measure the Charm-Higgs coupling: current status

### Measuring $Hc\bar{c}$ coupling is not easy

- Small mass  $\Rightarrow$  Small branching fraction BR( $H \rightarrow c\bar{c}$ )  $\simeq 2.8\%$
- ▶ Large QCD background at hadron colliders ⇒ Need *c*-tagging
- c-tagging is challenging

## **Current experimental searching**

- $\kappa$  framework: For  $y_c^{
  m SM}=\sqrt{2}m_c/v$  , set  $y_c=\kappa_c y_c^{
  m SM}$
- ▶  $pp \rightarrow VH(c\bar{c})$ : Need c-tagging
  - LHC Run 2: ATLAS  $\kappa_c \le 8.5$  [2201.11428], CMS  $1.1 < |\kappa_c| < 5.5$  [2205.05550]
  - Future HL-LHC:  $\kappa_c \leq 3$ . [2201.11428]
- $\blacktriangleright~$  Production of  $c\bar{c}$  bound states via Higgs decay:  $H\rightarrow J/\psi + \gamma$ 
  - $\blacktriangleright~$  Clean final states  $J/\psi \rightarrow \mu^+\mu^-$  , avoid c-tagging
  - $\blacktriangleright~$  The rate is too low:  $BR \sim 10^{-6}.$  [1306.5770, 1407.6695]
  - Result is less sensitive:  $\kappa_c \leq 100$ . [1807.00802, 1810.10056]





Probe the Yukawa couplings

# Quarkonia: From the Standard Model to beyond

# Charmonium used to be the new physics

- The "Standard Model" in the 1960s: "up", "down", "strange"
- ► November Revolution: The discovery of  $J/\psi$  in 1974  $\Rightarrow$  "charm" Richter and Ting explored the new energy regimes, not just to test the GIM mechanism.

# Nowadays quarkonium physics

- ► For over 20 years, we have been working the Standard Model with better precision
- ▶ With no doubt, it provides an ideal platform to study the QCD theory
- There may also be chance to see the hint of new physics beyond the Standard Model



Probe the Yukawa couplings

Summary and prospects O

# Non-relativistic QCD (NRQCD) framework

Separate the physics into two parts

$$\Gamma = \sum_{\mathbb{N}} \hat{\Gamma}_{\mathbb{N}}(H \to (Q\bar{Q})[\mathbb{N}] + X) \times \langle \mathcal{O}^{h}[\mathbb{N}] \rangle,$$

Short distance coefficient (SDC):

 $\mathrm{d}\hat{\Gamma}_{\mathbb{N}} = \frac{1}{2m_{H}} \frac{|\mathcal{M}|^{2}}{\langle \mathcal{O}^{Q\bar{Q}} \rangle} \mathrm{d}\Phi_{3}$ 

Long distance matrix element (LDME) Related to the wave function at origin

$$\begin{split} \langle \mathcal{O}^{J/\psi} [^3S_1^{[1]} \rangle &= \frac{3N_c}{2\pi} |R(0)|^2, \; \langle \mathcal{O}^{\eta_c} [^1S_0^{[1]} ] \rangle = \frac{N_c}{2\pi} |R(0)|^2, \\ \langle \mathcal{O}^{Q\bar{Q}} \rangle &= 6N_c, \; \text{for} \; {}^3S_1^{[1]}, \; \langle \mathcal{O}^{Q\bar{Q}} \rangle = 2N_c, \; \text{for} \; {}^1S_0^{[1]} \end{split}$$

## Higgs decay to $J/\psi$ and a photon

- $Hc\bar{c}$  diagram is suppressed  $\Rightarrow$  Small branching fraction
- The dominant contribution is from  $H\gamma\gamma$ diagram  $\Rightarrow$  Less sensitive to  $\kappa_c$  $\Gamma_{H\gamma\gamma^*} \simeq 1.32 \times 10^{-8} \,\text{GeV},$  $\Gamma_{\text{SM}} \simeq 1.00 \times 10^{-8} \,\text{GeV}$  [1306.5770,1407.6695]





Probe the Yukawa couplings

# Our idea: Look for a process with higher rate

 $H \to c + \bar{c} + J/\psi (\operatorname{or} \eta_c)$ 

#### Main contribution (Color-singlet):

Charm quark fragmentation to charmonia:  ${}^3S_1^{[1]}(J/\psi)$  and  ${}^1S_0^{[1]}(\eta_c)$ 



Compare with  $H \rightarrow J/\psi + \gamma$ 



- ► Enhancement from the quark fragmentation ⇒ Larger rate
- The  $Hc\bar{c}$  channel dominates  $\Rightarrow$  More sensitive to  $\kappa_c$

## More to calculate

- Corrections from QED and EW
- The color-octet mechanism



Background 000 Quarkonia production via Higgs decay

Probe the Yukawa couplings

Summary and prospects O

## More corrections from QED and EW sector

Pure QED diagrams: sizable correction to  ${}^{3}S_{1}^{[1]}(J/\psi)$  production Single photon fragmentation (SPF):  $1/q^{2} = 1/m_{J/\psi}^{2} \Rightarrow$  logarithmic enhancement



#### Electroweak correction from the HZZ diagrams

One of the Z can be on shell  $\Rightarrow$  resonance enhancement



 $\bullet$  Sizable for  ${}^1S_0^{[1]}(\eta_c)$  due to the larger axial  $Zc\bar{c}$  coupling.



Probe the Yukawa couplings

Summary and prospects O

# Charmonium productiuon via color octet states A key property of NRQCD

- A quarkonium can also be produced through color-octet  $Q\bar{Q}$  Fork states
- New states involved:  ${}^3S_1^{[8]}$ ,  ${}^1S_0^{[8]}$ ,  ${}^3P_J^{[8]}$ , and  ${}^1P_1^{[8]}$
- The LDMEs  $\langle \mathcal{O}^h[^{2S+1}L_J^{[color]}] \rangle$  need to be fitted from experimental data

| Reference  | $\langle \mathcal{O}^{J/\psi}[{}^1S_0^{[8]}]  angle$ | $\langle \mathcal{O}^{J/\psi}[{}^3S_1^{[8]}] \rangle$ | $\langle \mathcal{O}^{J/\psi}[^3P_0^{[8]}] angle/m_c^2$ |
|------------|------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|
| G. Bodwin, | $(9.9 \pm 2.2) \times 10^{-2}$                       | $(1.1 \pm 1.0) \times 10^{-2}$                        | $(4.89 \pm 4.44) \times 10^{-3}$                        |
| K.T. Chao, | $(8.9 \pm 0.98) \times 10^{-2}$                      | $(3.0 \pm 1.2) \times 10^{-3}$                        | $(5.6 \pm 2.1) \times 10^{-3}$                          |
| Y. Feng,   | $(5.66 \pm 4.7) \times 10^{-2}$                      | $(1.77 \pm 0.58) \times 10^{-3}$                      | $(3.42 \pm 1.02) \times 10^{-3}$                        |

## New diagrams for ${}^3S_1^{[8]}$

Single gluon fragmentation (SGF):  $1/q^2 = 1/m_{J/\psi}^2 \Rightarrow$  logarithmic enhancement





## Standard Model predictions Color-octet contributions: ${}^{3}S_{1}^{[8]}$ dominates

|                                              | ${}^{3}S_{1}^{[8]}$ | ${}^{1}S_{0}^{[8]}$   | ${}^{1}P_{1}^{[8]}$   | ${}^{3}P_{J}^{[8]}$   | Total               |
|----------------------------------------------|---------------------|-----------------------|-----------------------|-----------------------|---------------------|
| $\Gamma(H \to c \bar{c} + J/\psi)$ (GeV)     | $2.0 	imes 10^{-8}$ | $9.8 \times 10^{-10}$ | -                     | $2.2 \times 10^{-10}$ | $2.2 	imes 10^{-8}$ |
| $BR(H \to c\bar{c} + J/\psi)$                | $5.0 	imes 10^{-6}$ | $2.4	imes10^{-7}$     | -                     | $5.3	imes10^{-8}$     | $5.3	imes10^{-6}$   |
| $\Gamma(H  ightarrow c ar c + \eta_c)$ (GeV) | $1.8 	imes 10^{-7}$ | $3.6 \times 10^{-11}$ | $1.0 \times 10^{-10}$ | -                     | $1.8 	imes 10^{-7}$ |
| $BR(H \to c\bar{c} + \eta_c)$                | $4.5 	imes 10^{-5}$ | $8.9\times10^{-9}$    | $2.5 	imes 10^{-8}$   | -                     | $4.5 	imes 10^{-5}$ |

Take the  ${}^{3}S_{1}^{[8]}$  LDME for the uncertainty estimation

 $BR(H \to c\bar{c} + J/\psi) = (2.0 \pm 0.5) \times 10^{-5}, \ BR(H \to c\bar{c} + \eta_c) = (6.0 \pm 1.0) \times 10^{-5}.$ 





Background 000 Quarkonia production via Higgs decay

Probe the Yukawa couplings

Summary and prospects O

## Probe the $Hc\bar{c}$ coupling

Use the  $\kappa$  framework  $y_c = \kappa_c y_c^{\rm SM}, \, {\rm BR} \approx \kappa_c^2 \, {\rm BR}^{\rm SM}$ 





- HZZ diagrams
- $\blacktriangleright~{\rm The}\,H\to g^*g^*/\gamma^*\gamma^*\to J/\psi+c\bar{c}\,{\rm channel}$

Background

Quarkonia production via Higgs decay

Probe the Yukawa couplings

Summary and prospects O

# Background from $pp \rightarrow J/\psi + X$



- ▶ Prompt  $J/\psi$  production BR $(J/\psi \rightarrow \mu^+\mu^-) \times \sigma(pp \rightarrow J/\psi) \simeq$ 860 pb Charm-tagging is needed.
- Estimate 75000 events for  $pp \rightarrow J/\psi + c\bar{c}$ at a  $3 \, ab^{-1}$  HL-LHC Corresponding to a  $25 \, fb$  cross section Some kinematic cut may help.



Probe the Yukawa couplings

# Background from $H \rightarrow J/\psi + b\bar{b}$

Color-octet contribution dominates



#### **Charmonium energy distributions**

Take the color-octet LDME uncertainty for error estimation





Probe the Yukawa couplings

Summary and prospects O

# Some rough discussions

- ► BR $(J/\psi \rightarrow \ell^+ \ell^-) \sim 12\%$ , BR $(H \rightarrow J/\psi + c\bar{c}) \sim 2 \times 10^{-5}$
- $\blacktriangleright$  Higgs production cross section at LHC  $\sigma_H\sim 50$  pb, HL-LHC luminosity  $L\sim 3\,{
  m ab}^{-1}$
- $\blacktriangleright\,$  Assume the detection efficiency  $\epsilon \sim 10\%$
- The signal event number is given by

$$N = L\sigma_H \,\epsilon \,\mathrm{BR}(H \to c\bar{c}\ell^+\ell^-) \approx 12 \,\kappa_c^2 \times \frac{L}{\mathrm{ab}^{-1}} \times \frac{\epsilon}{10\%}$$

- Assume 10,000 background events after the election cuts at the HL-LHC
- Sensitivity  $S \simeq N_{\text{signal}} / \sqrt{N_{\text{Background}}}$  $\Rightarrow$  It is possible to reach  $2\sigma$  for  $\kappa_c \approx 2.4$ .
- ► systematic effect  $N_{\rm signal}/N_{\rm Background} = 2\%$  for  $\kappa_c \approx 2.4$ .



Probe the Yukawa couplings

## The bottom quark case

- New processes could verify the bottom quark Yukawa coupling measurements
- Learn lessons for the charm quark case

 $H \to \Upsilon + b\bar{b}$ 

• Replace c by b in  $H \rightarrow J/\psi + c\bar{c}$ Charm quark fragmentation  $BR \sim BR(H \rightarrow J/\psi + c\bar{c})$ 



- $H \to J/\psi + b\bar{b}$
- The  $Hb\bar{b}$  background in the  $Hc\bar{c}$  case Color-octet dominates  $BR\sim 4BR(H\rightarrow J/\psi+c\bar{c})$





# Summary and prospects

## Higgs is special and important

- The Higgs sector is the portal to new physics beyond SM.
- Testing the SM mass generation mechanism helps BSM physics searches.
- The Yukawa couplings of the 3rd generation fermions are precisely measured  $\Rightarrow$  The 2nd generation is the next target.
- There is chance to look at the Yukawa couplings from quarkonia production processes
- Benefit from the clean decay of  $J/\psi$  or  $\Upsilon \Rightarrow$  Look for processes with higher rate
- In the NRQCD framework, these processes are perturbatively calculable
- The QCD channel dominates, but there is also QED (SPF) and EW (HZZ or  $Ht\bar{t}$ )
- For the  $H \to J/\psi + c\bar{c} \Rightarrow 2\sigma$  for  $\kappa_c \simeq 2.4$ 
  - $\blacktriangleright~$  The SM prediction gives  $BR \sim 2 imes 10^{-5}$
  - Assume a  $3 \text{ ab}^{-1}$  HL-LHC, a 10% detection efficiency, and 10,000 background events

#### More work in progress:

- Background analysis, detector/systematic effects
- Better LDMEs fittings, higher order calculations/resummation ...



## Numerical parameters Standard Model parameters

$$\begin{aligned} &\alpha = 1/132.5, \ \alpha_s(2m_c) = 0.235, \ m_c^{\rm pole} = 1.5 \,{\rm GeV}, \ m_c(m_H) = 0.694 \,{\rm GeV}, \ m_H = 125 \,{\rm GeV}, \\ &m_W = 80.419 \,{\rm GeV}, \ m_Z = 91.188 \,{\rm GeV}, \ v = 246.22 \,{\rm GeV}, \ y_c^{\rm SM} = \frac{\sqrt{2}m_c(m_H)}{v} \approx 3.986 \times 10^{-3}. \end{aligned}$$

#### Choose the color-octet LDMEs

Different fitting strategies lead to different LDME values.

| Reference  | $\langle \mathcal{O}^{J/\psi}[{}^1S_0^{[8]}]  angle$ | $\langle \mathcal{O}^{J/\psi}[{}^3S_1^{[8]}]  angle$ | $\langle \mathcal{O}^{J/\psi} [{}^3P_0^{[8]}]  angle/m_c^2$ |
|------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|
| G. Bodwin, | $(9.9 \pm 2.2) \times 10^{-2}$                       | $(1.1 \pm 1.0) \times 10^{-2}$                       | $(4.89 \pm 4.44) \times 10^{-3}$                            |
| K.T. Chao, | $(8.9\pm0.98)	imes10^{-2}$                           | $(3.0 \pm 1.2) \times 10^{-3}$                       | $(5.6 \pm 2.1) \times 10^{-3}$                              |
| Y. Feng,   | $(5.66 \pm 4.7) \times 10^{-2}$                      | $(1.77 \pm 0.58) \times 10^{-3}$                     | $(3.42 \pm 1.02) \times 10^{-3}$                            |

- ▶ We take Bodwin's LDME fitting from CMS and CDF high  $p_T$  data.
- Use heavy quark spin symmetry (HQSS) to obtain the LDMEs for  $\eta_c$

$$\langle \mathcal{O}^{\eta_c} [{}^1S_0^{[1,8]}] \rangle = \frac{1}{3} \langle \mathcal{O}^{J/\psi} [{}^3S_1^{[1,8]}] \rangle, \ \langle \mathcal{O}^{\eta_c} [{}^3S_1^{[8]}] \rangle = \langle \mathcal{O}^{J/\psi} [{}^1S_0^{[8]}] \rangle, \ \langle \mathcal{O}^{\eta_c} [{}^1P_1^{[8]}] \rangle = 3 \langle \mathcal{O}^{J/\psi} [{}^3P_0^{[8]}] \rangle,$$



VMD

# Standard Model results (I): The overall picture

#### Decay width and branching fraction

|                                               | QCD [CS]             | QCD+QED [CS]         | Full [CS]           | Full [CO]           | Full [CS+CO]        |
|-----------------------------------------------|----------------------|----------------------|---------------------|---------------------|---------------------|
| $\Gamma(H  ightarrow c ar{c} + J/\psi)$ (GeV) | $4.8 	imes 10^{-8}$  | $5.8 	imes 10^{-8}$  | $6.1 	imes 10^{-8}$ | $2.2 	imes 10^{-8}$ | $8.3	imes10^{-8}$   |
| $BR(H \to c\bar{c} + J/\psi)$                 | $1.2 	imes 10^{-5}$  | $1.4 	imes 10^{-5}$  | $1.5 	imes 10^{-5}$ | $5.3	imes10^{-6}$   | $2.0 	imes 10^{-5}$ |
| $\Gamma(H \to c\bar{c} + \eta_c)$ (GeV)       | $4.9 	imes 10^{-8}$  | $5.1 	imes 10^{-8}$  | $6.3	imes10^{-8}$   | $1.8 	imes 10^{-7}$ | $2.4 	imes 10^{-7}$ |
| $BR(H \to c\bar{c} + \eta_c)$                 | $1.2 \times 10^{-5}$ | $1.2 \times 10^{-5}$ | $1.5 	imes 10^{-5}$ | $4.5 	imes 10^{-5}$ | $6.0 	imes 10^{-5}$ |

#### **Charmonium energy distributions**





# Worry about VMD ?

VMD

- $H \to J/\psi + c \bar{c}$ 
  - $\blacktriangleright~$  Larger decay rate:  ${\rm BR}\simeq 2\times 10^{-5}$
  - Sensitive to  $Hc\bar{c}$  coupling: QCD dominates
  - Other diagrams



 $\begin{array}{l} {\rm BR}(g^*g^*)\sim 2.5\times 10^{-6}, {\rm BR}(\gamma^*\gamma^*)< 2\times 10^{-7}\\ \bullet \, {\rm No \ need \ to \ worry \ about \ VMD} \end{array}$ 

# $H \to J/\psi + \gamma$

- Small decay rate:  ${
  m BR}\simeq 2.8 imes 10^{-6}$
- Insensitive to  $Hc\bar{c}$  coupling  $\Rightarrow \kappa_c \leq 100$

## VMD dominates



•  $\gamma^* \to J/\psi$  dominates over  $Hc\bar{c}$ Two orders of magnitude larger.



VMD

Fragmentation functions

# Some rough analysis (assume no background)

- $\blacktriangleright~$  Higgs production cross section at LHC  $\sigma_H\sim 50~{\rm pb}$
- $\blacktriangleright~$  Expect HL-LHC  $L\sim3\,{\rm ab}^{-1}$  at ATLAS and CMS and  $L\sim0.3\,{\rm ab}^{-1}$  at LHCb
- Detection efficiency  $\epsilon$  for the final state  $c\bar{c} + \ell^+ \ell^-$
- ► BR $(J/\psi \rightarrow \ell^+ \ell^-) \sim 12\%$ , BR $(H \rightarrow J/\psi + c\bar{c}) \sim 2 \times 10^{-5}$
- Event number  $N = L\sigma_H \epsilon \operatorname{BR}(H \to c\bar{c}\ell^+\ell^-) \approx 12 \kappa_c^2 \times \frac{L}{\operatorname{ab}^{-1}} \times \frac{\epsilon}{10\%}$

 $\blacktriangleright~$  Considering the statistical error only  $\delta N \sim \sqrt{N}$  gives

$$\Delta \kappa_c \approx 15\% \times (\frac{L}{\rm ab^{-1}} \times \frac{\epsilon}{10\%})^{-1/2}$$



#### **Detection efficiency** $\epsilon$ :

- Double charm-tagging  $(40\%)^2 \sim 16\%$
- Kinematic acceptance 50%
- Assume  $\epsilon \sim 10\% \Rightarrow \Delta \kappa_c \sim 15\%$





## More about the final state





# When is $y_c$ not related to the charm mass? Higgs Effective Field Theory (HEFT)

SU(2) doublets of the global  $SU(2)_{L,R}$  symmetries:

$$Q_L = \begin{pmatrix} U_L \\ D_L \end{pmatrix}, \ Q_R = \begin{pmatrix} U_R \\ D_R \end{pmatrix}, \ L_L = \begin{pmatrix} \nu_L \\ E_L \end{pmatrix}, \ L_R = \begin{pmatrix} 0 \\ E_R \end{pmatrix}.$$

Define  $U(x)\equiv \exp(i\sigma_a\pi^a(x)/v)$ , so that the Lagrangian contains

$$\mathcal{L} \supset -\frac{v}{\sqrt{2}} \bar{Q}_L U y_Q(h) Q_R - \frac{v}{\sqrt{2}} \bar{L}_L U y_L(h) L_R + h.c.$$

The functions  $y_Q(h)$  and  $y_L(h)$  control the Yukawa couplings

$$y_Q(h) \equiv \operatorname{diag}\left(\sum_n y_U^{(n)} \frac{h^n}{v^n}, \sum_n y_D^{(n)} \frac{h^n}{v^n}\right), \ y_L(h) \equiv \operatorname{diag}\left(0, \sum_n y_\ell^{(n)} \frac{h^n}{v^n}\right)L$$

n=0 is for mass term, n=1 is for Yukawa coupling.





## Fragmentation formalism

The decay width is written as a convolution Define  $z \equiv 2E_{\psi}/m_H$ 

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}z}(H \to \psi(z)q\bar{q}) = 2C_q \otimes D_q + C_g \otimes D_g, C \otimes D \equiv \int_z^1 C(y)D(z/y)\frac{\mathrm{d}y}{y}$$

#### Hard coefficient

$$C_q(\mu^2, z) = \Gamma(H \to q\bar{q})\delta(1-z)$$
  

$$C_g(\mu^2, z) = \frac{4\alpha_s}{3\pi}\Gamma(H \to q\bar{q}) \left[\frac{(z-1)^2 + 1}{z}\log\left(\frac{(1-z)z^2m_H^2}{\mu^2}\right) - z\right]$$

#### **Fragmentation functions**

$$\begin{split} D_{c \to J/\psi}^{(1)}(\mu^2, z) &= \frac{128\alpha_s^2}{243m_{J/\psi}^3} \frac{z(1-z^2)}{(2-z)^6} (16 - 32z + 72z^2 - 32z^3 + 5z^4) \langle \mathcal{O}^{J/\psi}(^3S_1^{[1]}) \rangle \\ D_{q \to \psi}^{(8)}(\mu^2, z) &= \frac{2\alpha_s^2}{9m_\psi^3} \left[ \frac{(z-1)^2 + 1}{z} \log\left(\frac{\mu^2}{m_\psi^2(1-z)}\right) - z \right] \langle \mathcal{O}^{J/\psi}(^3S_1^{[8]}) \rangle \end{split}$$