Combined measurements of the Higgs Boson coupling and cross sections with the ATLAS detector

Fábio Lucio Alves on behalf of the ATLAS Collaboration Higgs 2023, IHEP, Beijing November 27 - December 02

中國科學院為能物理研究所 Institute of High Energy Physics Chinese Academy of Sciences

Motivation

More than 10 years of the Higgs Boson discovery at LHC:

- Measurements of the Higgs Boson properties (mass, spin, width, cross sections, couplings) with increased precision
 - Consistency with SM predictions intensively tested

... that is the moment to perform the combination!

- Combination of the single Higgs analysis allows to test the Higgs sector and constraint the strength of the interaction between the Higgs and the SM particles
 - κ -framework, Simplified template cross sections (STXS) and differential cross sections
 - Measurements can be interpreted under BSM/EFT scenarios
- H + HH, $H \rightarrow$ invisible and $H \rightarrow Z\gamma$ combinations are also explored
- Combination using golden channels with early Run3 data is also performed

years **HIGGS** boson discovery

Higgs Symposium at CERN for 10 years discovery

Higgs Boson production and decay at LHC

Higgs Production processes:

- Gluon-gluon fusion (ggF) (*dominant production mode*)
- Vector-boson fusion (VBF)
- Association with a vector boson (VH)
- Association with top and bottom quark pair (ttH/bbH)

Higgs Decay channels:

- $H \to ZZ^* \to 4l$ and $H \to \gamma\gamma$
 - Low BR and high mass resolution
- $H \to b\bar{b}, H \to W^{\pm}W^{\mp}, H \to \tau^{+}\tau^{-}$ and $H \to c\bar{c}$
 - High BR and low mass resolutions
- Rare decays: $H \to \mu^+ \mu^-$ and $H \to Z\gamma$

Cross sections and Branching ratio measurements

Production cross sections (free parameter in the fit, BR fixed to SM values):

- ggF and VBF observed in Run1, precision in Run2 7% and 12% respectively
- Observed in Run2: WH (5.8 σ), ZH (5.0 σ) and ttH + tH (6.4 σ)

Branching ratio (free parameter in the fit, XS fixed to SM values):

- $\gamma\gamma$, ZZ, $W^{\pm}W^{\mp}$ and $\tau^{+}\tau^{-}$ already observed during Run 1, precision in Run2 ranges from 10% to 12%
- $H \rightarrow b\bar{b}$ decay mode observed with 7.0 σ , $H \rightarrow \mu^+\mu^-$ and $H \rightarrow Z\gamma$ signal significances measured to be 2.0 σ and 2.3 σ , respectively

Higgs Boson production rates measurements

• Relaxed assumptions by measuring the $\sigma \times B$ Good agreement between the measurements and SM predictions

Nature, vol. 607, 52-59 (2022)

 $\sigma \times B$ normalized to SM prediction

Higgs Boson coupling measurements

$\sqrt[m]{\sigma} \times B$ is parametrized in terms of multiplicative coupling strength modifiers (κ) (κ -framework)

• Total decay width accounts for all decay modes, direct/indirect decays and hypothetical decays to non-SM particles

 $\kappa_V = \kappa_Z = \kappa_W$ (for the weak bosons), κ_F (all fermions)

• Assuming no invisible or undetected Higgs Boson decays beyond SM ($B_{inv} = 0$ and $B_{u} = 0$) Test predicted scaling of the Higgs Boson coupling to SM particles as a function of their masses: $\kappa_W, \kappa_Z, \kappa_t, \kappa_b, \kappa_c, \kappa_\tau, \kappa_u$, are treated independently

Nature, vol. 607, 52-59 (2022)

Compatible with SM predictions (p-value 56% for $\kappa_c = \kappa_t$) (p-value 65% for κ_c floating)

The simplified template cross section measurements

Simplified template cross section framework:

- Mutually exclusive regions (36) of the phase space split based on Higgs kinematics (+ W or Z bosons and associated jets)
- Sensitive to SM deviations; reduce large theory uncertainties and minimize model-dependence when extrapolating to accessible signal regions
- More regions are probed compared to previous result [1], specially for High Pt Higgs Boson

Good compatibility between the measurements and the SM predictions!

P-value compatibility of combined measurement and SM: 94%

[1]: PhysRevD.101.012002

<u>Nature, vol. 607, 52-59 (2022)</u>

7

BSM/EFT interpretations

The STXS measurements and differential cross sections are interpreted in the context of:

• Effective Field Theory (EFT)

The production cross section and decay branching ratio measurements are interpreted in the context of:

 \bullet

BSM scenarios: Two-Higgs-Doublet Model (2HDM) or Minimal Supersymmetric Extension of the SM (MSSM)

More details on <u>Yuhao Wang</u> and <u>Chen Zhou's talk</u>

$H \rightarrow$ invisible combination

In the SM, branching ratio to invisible final state is about 0.1% from $H \rightarrow ZZ^* \rightarrow 4v$ ATLAS direct searches for invisible decays of the Higgs Boson using Full Run 2 dataset:

• ggF, VBF, VH and ttH production mechanisms

H-> invisible: no interaction with ATLAS detector

H+HH combination

The single Higgs input analysis have been combined with the three most sensitive double Higgs channels: $HH \rightarrow b\bar{b}\gamma\gamma$, $HH \rightarrow b\bar{b}\tau^+\tau^-$ and $HH \rightarrow b\bar{b}b\bar{b}$

· Correlation between nuisance parameters of different analysis coherently taking into account

H+HH combination provides the most stringent constraints to date

 $-0.4 < \kappa_{\lambda} < 6.3 @ 95\%$ CL

The addition of the single-Higgs analyses to the combination allow relaxing assumptions on κ_t

 $-0.4 < \kappa_{\lambda} < 6.3 @ 95\%$ CL (sensitivity on κ_{λ} is kept) **Generic model where** $\kappa_{\lambda}, \kappa_{V}, \kappa_{t}, \kappa_{b}, \kappa_{\tau}$ **are floated** simultaneously in the fit

 $-1.4 < \kappa_{\lambda} < 6.1 @ 95\%$ CL (there is still strong constraint on κ_{λ})

Combination assumption	Obs. 95% CL	Exp. 95% CL	Obs.
HH combination	$-0.6 < \kappa_\lambda < 6.6$	$-2.1 < \kappa_\lambda < 7.8$	$\kappa_{\lambda} =$
Single-H combination	$-4.0 < \kappa_\lambda < 10.3$	$-5.2 < \kappa_\lambda < 11.5$	$\kappa_{\lambda} =$
HH+H combination	$-0.4 < \kappa_\lambda < 6.3$	$-1.9 < \kappa_\lambda < 7.6$	$\kappa_{\lambda} =$
<i>HH</i> + <i>H</i> combination, κ_t floating	$-0.4 < \kappa_\lambda < 6.3$	$-1.9 < \kappa_\lambda < 7.6$	$\kappa_{\lambda} =$
<i>HH</i> + <i>H</i> combination, κ_t , κ_V , κ_b , κ_{τ} floating	$-1.4 < \kappa_{\lambda} < 6.1$	$-2.2 < \kappa_\lambda < 7.7$	$\kappa_{\lambda} =$

First evidence for the Higgs Boson decay to $Z\gamma$

Statistical combination of the ATLAS and CMS searches for $H \rightarrow Z\gamma$:

- Signal strength (μ):
 - $\mu = 2.2 \pm 0.7 \ (1.0 \pm 0.6, \text{ exp.})$
- **Significance** (no $H \rightarrow Z\gamma$ signal hypothesis)
 - 3.4σ (1.6 σ , exp.)
- Measured branching fraction as $(3.4 \pm 1.1) \times 10^{-3}$

Important systematic uncertainties related to $H \rightarrow Z\gamma$ branching fraction and background modelling

Uncertainties in the measurement dominated by statistical component

$H \rightarrow Z\gamma Run2 combination$

in Higgs discovery

• Fully reconstructible final state with excellent mass resolution

Statistical combination for measuring the total cross section using early Run3 data

- Total cross section: Extrapolation to the full phase space by assuming the SM acceptance and branching fractions
- **Total combined cross section comparison:**
- $55.5_{-3.8}^{+4.0}$ pb (at 13 TeV) versus 58.2 ± 8.7 pb (at 13.6 TeV)
 - Relative increase of the total combined cross section is $\sim 5\%$

$H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4l$ combination at 13.6 TeV

Submitted to EPJC, arXiv:2306.11379

The combination of the single Higgs measurements has been performed with the LHC Run 2 dataset:

- It has allowed to test the Higgs sector by measuring the Higgs production and decay rates and the its couplings to the SM particles
 - All measurement show excellent agreement with the SM predictions
- These combined measurements have been used for interpretations in the context of the EFT, 2HDM and MSSM models
 - No significant deviation with respect to the SM is observed
- Combinations of the direct invisible decays searches are complementary to the direct dark matter searches
 - Improved limits using Full Run 2 dataset with respect to Run 1 and partial Run 2
- Combination with double Higgs most sensitive channels
 - Most stringent constraint on the Higgs Boson trilinear self-coupling to date
- $H \rightarrow Z\gamma$ ATLAS+CMS combination: first evidence for this Higgs Boson decay

• Sensitivity is enhanced by the combination

Additionally, since the Run 3 is already here, the combination of the total cross sections in the golden channels is obtained using the Run 3 dataset collegged at 13.6 TeV

Run 3 data-taking just started! There are much more to come! **Stay tuned!**

Single Higgs combination: input analysis

Decay mode	Targeted production processes	\mathcal{L} [fb $^{-1}$]	Ref.	Fits deployed in
$H \rightarrow \gamma \gamma$	ggF, VBF, WH , ZH , $t\overline{t}H$, tH	139	31	All
$H \rightarrow ZZ$	ggF, VBF, $WH + ZH$, $t\overline{t}H + tH$	139	28	All
	$t\overline{t}H + tH$ (multilepton)	36.1	39	All but fit of kinematics
$H \rightarrow WW$	ggF, VBF	139	29	All
	WH, ZH	36.1	30	All but fit of kinematics
	$t\overline{t}H + tH$ (multilepton)	36.1	39	All but fit of kinematics
$H \rightarrow Z \gamma$	inclusive	139	32	All but fit of kinematics
$H \rightarrow b \bar{b}$	WH, ZH	139	33,34	All
	VBF	126	35	All
	$t\overline{t}H + tH$	139	36	All
	inclusive	139	37	Only for fit of kinematics
$H \to \tau \tau$	ggF, VBF, $WH + ZH$, $t\overline{t}H + tH$	139	38	All
	$t\overline{t}H + tH$ (multilepton)	36.1	39	All but fit of kinematics
$H ightarrow \mu \mu$	$ggF + t\overline{t}H + tH$, VBF + $WH + ZH$	139	40	All but fit of kinematics
$H \to c \bar c$	WH + ZH	139	41	Only for free-floating κ_c
$H \rightarrow \text{invisible}$	VBF	139	42	κ models with $B_{u.}$ & $B_{inv.}$
	ZH	139	43	15 κ models with $B_{u.}$ & $B_{inv.}$

Not used in STXS measurement due to limited sensitivity

Only used in STXS measurement

- $\mu_{if} = \frac{\sigma_i}{\sigma_i^{SM}} \times \frac{B_f}{B_f^{SM}}$ (signal strength for a production mode i and decay mode f)
- •Assuming all the production and decay processes scale with same global signal strength: $\mu = \mu_{if}$

$$\mu = 1.05 \pm 0.05 = 1.05 \pm 0.03$$
(stat.) \pm

Total uncertainty is reduced by about 30% wrt previous combination with partial Run2 (80 fb-1)

Higgs Boson coupling measurements

$\sigma \times B$ is parametrized in terms of multiplicative coupling strength modifiers (κ) (κ -framework)

- Allow for the presence of non-SM particles in the loops-induced processes
 - •Parametrized by the effective coupling strength modifiers $\kappa_g, \kappa_\gamma, \kappa_{Z\gamma}$
- •Scenarios studies:
 - $B_{inv.} = B_{u.} = 0$ (no contribution to the total Higgs decay width)
 - $B_{inv.}, B_{u.}$ are allowed to contribute to the total Higgs decay width ($\kappa_V \le 1, B_{u.} \ge 0$)

Observed Upper limits: $B_{inv.} < 0.13$ and $B_{inv.} < 0.12$ @ 95%CL

Measured coupling strength modifiers are compatible with the SM predictions P-value compatibility with SM: 61% for $B_{inv} = B_{\mu} = 0$

BSM/EFT interpretations

2HDM interpretation

Coupling	Type I	Type II	Lepton-specific	Flipped		
u, c, t	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$					
d, s, b	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$	$s_{\beta-\alpha} - c_{\beta-\alpha} \times \tan\beta$	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$	$s_{\beta-\alpha} - c_{\beta-\alpha} \times \tan\beta$		
e, μ, τ	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$	$s_{\beta-\alpha} - c_{\beta-\alpha} \times \tan\beta$	$s_{\beta-\alpha} - c_{\beta-\alpha} \times \tan\beta$	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$		
W, Z	$S_{\beta-lpha}$					
Н	$s_{\beta-\alpha}^3$	$_{\alpha} + \left(3 - 2\frac{\bar{m}^2}{m_h^2}\right) c_{\beta-\alpha}^2 s_{\beta-\alpha}$	$a_{\alpha} + 2 \cot\left(2\beta\right) \left(1 - \frac{\bar{m}^2}{m_h^2}\right)$	$c_{\beta-\alpha}^3$		

Minimal Supersymmetric Standard Model (MSSM) interpretation

Minimal extension of the SM that addresses open questions in the SM as the hierarchy problem and Dark Matter particle candidate

H+HH combination

9,5%CL Observed and expected exclusion limits on the HH production cross section for ggF+VBF as a function of κ_{λ} and VBF production mode versus κ_{2V}

• Combination of the three most HH sensitive channels

²D contour curves in the κ_t - κ_{λ} plane

• All other coupling modifiers are fixed to the unity

Higgs to yy channel

Fiducial cross section measurement: $\sigma_{fid.} = 76 \pm 11(\text{stat.})^{+9}_{-7}(\text{syst.})$

$H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4l$ combination at 13.6 TeV

Fiducial cross section measurement: $\sigma_{fid.} = 2.80 \pm 0.70 (\text{stat.}) \pm 0.21 (\text{syst.})$

