Measurements and interpretations of STXS and differential and fiducial cross sections in HWW* channel with the ATLAS detector

Dongshuo Du (杜东硕)

University of Science and Technology of China (On behalf of the ATLAS collaboration)

Higgs 2023, Nov 27- Dec 2 2023, Beijing

Outline

➢Introduction

➢Inclusive cross sections of Higgs boson production

- ggF+VBF with $H\rightarrow WW^*$ Phys. Rev. D 108 (2023) 032005
- VH with $H \rightarrow WW^*$

ATLAS-CONF-2022-067

➢ Fiducial and differential cross sections

- ggF with $H \rightarrow WW^* \rightarrow evuv$ Eur. Phys. J. C 83 (2023) 774
- VBF with $H \rightarrow WW^* \rightarrow evuv$ Phys. Rev. D 108 (2023) 072003

Outline

►Introduction

➢ Inclusive cross sections of Higgs boson production
 • ggF+VBF with H→WW*
 • VH with H→WW*
 Phys. Rev. D 108 (2023) 032005
 ATLAS-CONF-2022-067

Fiducial and differential cross sections

- ggF with $H \rightarrow WW^* \rightarrow evuv$ Eur. Phys. J. C 83 (2023) 774
- VBF with $H \rightarrow WW^* \rightarrow evuv$ Phys. Rev. D 108, 072003

Introduction

- ➢A particle consistent with the SM Higgs boson was discovered at the LHC in 2012 with a mass of ~125 GeV
- ➤The Higgs boson is one of the most important particles in the SM
 - Connected to the numerous fundamental questions
 - A detailed study of its properties may provide answers
- ➤The measurement of production and decay rates is one of the most important way to test the SM and look for possible new physics.
 - Inclusive cross section of Higgs production & decay
 - Simplified template cross-sections (STXS) measurement
 - Fiducial and differential cross section measurement

arXiv: 2209.07510

With increasing data, measurements can be performed with finer binning and in a more model-independent way

Higgs production and decay modes

Production modes

- The leading production mode is ggF
- ➢ Followed by VBF and VH production modes
- ➤ ttH can provide direct measurement of top-Higgs coupling
- > H \rightarrow bb (57%) : The most profilic channel, very hard to observe
- ➢ H→WW* (21%): The second largest BR, large background but leptonic decay useful for distinguishing signal
- → H→ $\gamma\gamma$ (0.2%) and H→ZZ*→4l (0.01%): Small BR but cleaner background

Decays of a 125 GeV Standard-Model Higgs boson

Higgs production and decay modes

Topic today

Production modes

- \succ The leading production mode is ggF \star
- \succ Followed by VBF and VH production modes +
- ttH can provide direct measurement of top-Higgs coupling
- \rightarrow H \rightarrow bb (58%) : The most profilic channel, very hard to observe
- \rightarrow H \rightarrow WW* (21%): The second largest BR, large background but leptonic decay useful for distinguishing signal \checkmark
- \rightarrow H $\rightarrow\gamma\gamma$ (0.2%) and H \rightarrow ZZ* \rightarrow 4l (0.01%): Small BR but cleaner background

Decays of a 125 GeV Standard-Model Higgs boson

Outline

Introduction

►Inclusive cross sections of Higgs boson production

- ggF+VBF with $H\rightarrow WW^*$ Phys. Rev. D 108 (2023) 032005
- VH with H \rightarrow WW*

ATLAS-CONF-2022-067

Fiducial and differential cross sections

- ggF with $H \rightarrow WW^* \rightarrow evuv$ Eur. Phys. J. C 83 (2023) 774
- VBF with $H \rightarrow WW^* \rightarrow evuv$ Phys. Rev. D 108, 072003

≻Summary

ggF + ∨BF H→WW*: Analysis Strategy

- Signal: different flavour ($e\mu+\mu e$) opposite charge leptons + MET
- Events split in 4 analysis categories based on N_{jets}
 - ggF: $N_{jets} = 0, 1, \ge 2$, cut based $\checkmark m_T$ used as discriminant variable
 - VBF: N_{jets} ≥ 2, "deep" neural network (DNN) based
 ✓ DNN used as discriminant variable
- ≻Main background:
 - Non-resonant qqWW, top and $Z \rightarrow \tau \tau$
 - ✓ ggF: qqWW, top and Z→ $\tau\tau$ normalized by CRs

✓ VBF: top and $Z \rightarrow \tau \tau$ normalized by CRs

• Background with mis-identified leptons estimated by data-driven fake factor method

$$m_T = \sqrt{(E_{\mathsf{T}}^{\ell\ell} + E_{\mathsf{T}}^{\mathsf{miss}})^2 - |\mathbf{p}_{\mathsf{T}}^{\ell\ell} + E_{\mathsf{T}}^{\mathsf{miss}}|^2}, \quad E_{\mathsf{T}}^{\ell\ell} = \sqrt{|\mathbf{p}_{\mathsf{T}}^{\ell\ell}|^2 + m_{\ell\ell}^2}$$

ggF + ∨BF H→WW*: Coupling results

Good agreement between data and mc prediction

Measurements are consistent with SM prediction

Simplified Template Cross Section (STXS)

- \succ The aim with STXS method:
 - Improve sensitivity of measurements
 - Reduce their dependence on the theory
 - High p_T^H bins more sensitive to beyond standard model effects
- STXS framework provides different stages (e.g. stage 0, stage 1, stage 1.2) with varying degrees of granularity
- Categorizing events into bins of key (truth) variables (p_T^H, N_{jets}, m_{jj}) in different production modes (ggH, EW qqH, VH and ttH)
- > STXS well-suited to combine different decay channels
- Higgs boson properties measured with 139 fb⁻¹ for Higgs boson rapidity |y_H| < 2.5</p>

9

$ggF + VBF H \rightarrow WW^*: STXS$

$ggF + VBF H \rightarrow WW^*: STXS results$

VH H→WW* (lvjj, lvlv): Analysis strategy

- ➤Targeting WH and ZH productions: 2, 3 and 4 leptons in the final state
- ▶8 SRs according to the number, flavour and charges of the leptons
 - Opposite sign 2l channel (VH, V→qq) (DNN)
 - Same sign 21 channel (WH): ee, mm, em (RNN^(*))
 - 3I channel (WH): Z-depleted/enriched (DNN)
 - 4I channel (ZH): >= 1 SFOS^(**) pair (BDT)
 ✓ 3m1e + 3e1m: 1 SFOS → highest sensitivity

✓ 4e + 4m + 2e2m: 2SFOS

Use of MVA techniques to separate Higgs signal from main SM backgrounds for all channels

ATLAS-CONF-2022-067

$\vee H H \rightarrow WW^*$ (lvjj, lvlv): Results

\triangleright Observed VH combined significance: 4.6 σ ATLAS Preliminary H Total Dominated by the $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ Statistical Unc. $VH. H \rightarrow WW^*$ Systematic Unc. • 4I (1 SFOS) is the most sensitive channel statistial uncertainty SM Prediction • Strong evidence (almost observation) of $ZH(\rightarrow WW*)$: 4.6 σ Total (Stat., Syst.) SM Unc. + 0.32 $\begin{pmatrix} +0.27 & +0.17 \\ -0.25 & -0.15 \end{pmatrix} \pm 0.03$ 0.45 WH The measurements Events / bin Events / bin ATLAS Preliminary ATLAS Preliminary of WH and ZH are + 0.53 $\begin{pmatrix} +0.50 & +0.18 \\ -0.44 & -0.15 \end{pmatrix}$ $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ ± 0.05 $Z(Z/\gamma^*)$ √s = 13 TeV, 139 fb⁻¹ ZH 10³ $Z(Z/\gamma^*)$ $VH. H \rightarrow WW^*$ ttZ/tWZ compatible at a level $VH, H \rightarrow WW^*$ ttZ/tWZ 4I 1-SFOS SR Other Higas 4I 2-SFOS SR Other Higgs + 0.25 $\begin{pmatrix} +0.21 & +0.13 \\ -0.20 & -0.11 \end{pmatrix} \pm 0.02$ 0.92 VH of 2.1σ 20 10 0.5 1.5 2 2.5 4.5 0 1 3 3.5 $(\sigma \times B_{H \to WW^*}) / (\sigma \times B_{H \to WW^*})_{cm}$ 10 [dd] *_{WW} 10 0.9 - ATLAS Preliminary -68% CL $0.8 - \sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ - 95% CL * Best fit $VH, H \rightarrow WW^*$ $\times \mathrm{BR}_{\mathrm{H}}$ 0.7 10 SM 0.6 1.6 1.6 σ_{ZH} Data / Pred. Results in agreement Pred. 0.5 1.4 1.4 1.2 1.2 0.4 with SM within 1.8σ Data 0.8 0.8 0.3 0.6 0.6 0.4^E 0.4 0.2 1-1, -0.211 $, \stackrel{l - 0.21}{\longrightarrow}, \stackrel{l - 0.13}{\longrightarrow}, \stackrel{l - 0.05}{\longrightarrow}, \stackrel{l 0.03}{\longrightarrow}, \stackrel{l 0.14}{\longrightarrow}, \stackrel{l 0.24}{\longrightarrow}, \stackrel{l 0.$ $\stackrel{l-1}{\longrightarrow} \stackrel{0.06}{\longrightarrow} \stackrel{0.01}{\longrightarrow} \stackrel{0.01}{\longrightarrow} \stackrel{0.06}{\longrightarrow} \stackrel{0.06}{\longrightarrow} \stackrel{0.11}{\longrightarrow} \stackrel{0.13}{\longrightarrow} \stackrel{0.13}{\longrightarrow} \stackrel{0.16}{\longrightarrow} \stackrel{16}{\longrightarrow} \stackrel{0.2}{\longrightarrow} \stackrel{10}{\longrightarrow} \stackrel{10}{\rightarrow} \stackrel{10}{\rightarrow} \stackrel{10}{\rightarrow} \stackrel{10}{\rightarrow} \stackrel{10}{\rightarrow} \stackrel{10}{\rightarrow} \stackrel{10}{\rightarrow} \stackrel{10}{\rightarrow$ 0.1 **1-SFOS BDT output** 2-SFOS BDT output -0.2-0.10.1 0.2 0.3 0.4 0.5 ATLAS-CONF-2022-067 $\sigma_{WH} \times BR_{H \rightarrow WW^*}$ [pb]

Most sensitive channels limited by statistics will highly benefit from new Run 3 data

Outline

►Introduction

➢ Inclusive cross sections of Higgs boson production
 • ggF+VBF with H→WW*
 • VH with H→WW*
 △ ATLAS-CONF-2022-067

➢ Fiducial and differential cross sections

- ggF with $H \rightarrow WW^* \rightarrow evuv$ Eur. Phys. J. C 83 (2023) 774
- VBF with $H \rightarrow WW^* \rightarrow evuv$ Phys. Rev. D 108, 072003

Fiducial Differential Cross-section measurement

- With more data collected, the properties of the Higgs boson can be studied in more detail and in a more model independent way
- Fiducial phase space is defined to mimic the real detector acceptance and to minimize the extrapolation effects.

≻Limitation:

- Extrapolation to the total phase space is needed to do the combination
- Reduced sensitivity for BSM effects compared to dedicated analyses

➤Usually considered observables:

- Higgs boson kinematics & decay observables
- Jets associated with the Higgs boson

Differential XS in $H \rightarrow WW^*$: ggF phase space

Various observables in one and two-dimensions are measured to probe different Higgs properties:
ATLAS

- 8 observables for 1 dimension: $|y_{ll}|, p_T^{ll}, p_T^{l0}, \Delta \phi_{ll}, y_{j0}, \cos\theta^*, p_T^H, m_{ll}$
- 6 observables for 2 dimensions: $|y_{ll}|$, p_T^{ll} , p_T^{l0} , $\Delta \phi_{ll}$, $cos\theta^*$, m_{ll} as function of N_{jets}
- ➤m_T distribution is used to extract signal in each bin of a given observable, with control regions for background estimation

➤Tikhonov-regularized in-likelihood unfolding used

Eur. Phys. J. C 83 (2023) 774

Differential XS in H→WW*: ggF Results

dσ/d(cosθ*) [fb] dơ/d(p^H) [fb/GeV] 160[Data Data W Sys. Uncertainty NV Sys. Uncertainty .2 140E Powheg+Pythia8 (p=31%) Powheg+Pythia8 (p=93%) Powheg+Herwig7 (p=25%)_ 120 Powheg+Herwig7 (p=95%)-MadgraphFxFx (p=28%) MadgraphFxFx (p=97%) 100 0.8 80 0.6F ATLAS 60 0.4 $H \rightarrow WW \rightarrow ev \mu v; N_{iet} = 0,1$ ATLAS 40 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ $H \rightarrow WW \rightarrow ev\mu v; N_{iet} = 0,1$ 20 0.2 $\sqrt{s} = 13 \text{ TeV}$, 139 fb⁻¹ Pred. / Obs. 1.5E Pred. / Obs. .5₽ 0-0.125 0.5-1 0.125-0.25 0.25-0.375 0.375-0.5 0-30 30-60 60-120 120-1000 cos0* p₊^H [GeV]

Sensitive to the spin structure

In general, good agreement between different theoretical predicatons and measured cross sections

 \succ Competitive channel at high Higgs p_T: ~1 σ sensitivity for p_T^H > 120 GeV

Sensitive to BSM contributions

Differential XS in H→WW*: VBF phase space

➢Phase space: >= 2 jet

Phys. Rev. D 108 (2023) 072003

Differential cross-sections measured for different observables:

- Higgs related: $p_{\mathrm{T}}^{\mathrm{H}} p_{\mathrm{T}}^{\ell \ell} p_{\mathrm{T}}^{\ell_{1}} p_{\mathrm{T}}^{\ell_{2}} m_{\ell \ell} |\Delta y_{\ell \ell}| |\Delta \phi_{\ell \ell}| \cos(\theta_{\eta}^{*})$
- Jet related: $p_{
 m T}^{{
 m j}_1}$ $p_{
 m T}^{{
 m j}_2}$ $m_{
 m jj}$ $|\Delta y_{
 m jj}|$ $\Delta \phi_{
 m jj}$
- Dedicated BDT discriminants used
 - D_{VBF} and $D_{\text{Top+VV}}$ are used to distinguish signal from backgrounds
 - Additional BDT (D_{ggF}) or kinematic cuts are used in control regions
- Profile likelihood fit with an unfolding method to extract the cross section

18

Differential XS in H→WW*: VBF Results

Statistical uncertainty dominant

Measurements are consistent with the SM

Differential cross sections used to constrain anomalous interactions

Most stringent constraint

19

Summary

- ≻H → WW* channels investigated with 139 fb⁻¹ of data collected with the ATLAS detector @13TeV
 - Inclusive, STXS and differential cross section measurements are presented
 - All the measurements are in agreement with the SM predictions
 - The differential cross sections measurements are used to constrain the anomalous interactions
- ➤Thanks to the increased statistics with full Run2 dataset, more finely-grained measurements are presented.

Stay tuned for more results to come from Run2 & Run3

The importance of the Higgs boson

arXiv: 2209.07510

$ggF \& VBF H \rightarrow WW^*$: Samples

Process	Matrix element (alternative)	PDF set	UEPS model (alternative model)	Prediction order for total cross section
ggF H	POWHEG BOX2 [23–27] NNLOPS [26,30,43]	PDF4LHC15NNLO [57]	pythia8 [28]	$N^{3}LO QCD + NLO EW$ [11,33–42]
	(MG5_aMC@NLO) [49,86]		(Herwig7) [48]	
VBF H	POWHEG BOX2 [23–25,43] (MG5_aMC@NLO)	PDF4LHC15NLO	PYTHIA8 (Herwig7)	NNLO QCD + NLO EW [44–46]
VH excluding $gg \rightarrow ZH$	POWHEG BOX2	PDF4LHC15NLO	PYTHIA8	NNLO QCD + NLO EW [52–56]
tīH	POWHEG BOX2	NNPDF3.0NLO	PYTHIA8	NLO [11]
$gg \rightarrow ZH$	POWHEG BOX2	PDF4LHC15NLO	PYTHIA8	NNLO QCD + NLO EW [87,88]
$qq \rightarrow WW$	Sherpa2.2.2 [69]	NNPDF3.0NNLO [50]	Sherpa2.2.2 [70,71,73–76]	NLO [77,78,89]
	$(Q_{\rm cut})$		(Sherpa2.2.2 [71,72]; µ _q)	
$qq \rightarrow WWqq$	MG5_aMC@NLO [49]	NNPDF3.0NLO	PYTHIA8 (Herwig7)	LO
$gg \rightarrow WW/ZZ$	Sherpa2.2.2	NNPDF3.0NNLO	Sherpa2.2.2	NLO [90]
$WZ/V\gamma^*/ZZ$	Sherpa2.2.2	NNPDF3.0NNLO	Sherpa2.2.2	NLO [91]
Vγ	Sherpa2.2.8 [69]	NNPDF3.0NNLO	Sherpa2.2.8	NLO [91]
VVV	Sherpa2.2.2	NNPDF3.0NNLO	Sherpa2.2.2	NLO
tī	POWHEG BOX2	NNPDF3.0NLO	PYTHIA8 (Herwig7)	NNLO + NNLL [92–98]
Wt	(MG5_aMC@NLO) POWHEG BOX2 (MG5_aMC@NLO)	NNPDF3.0NLO	PYTHIA8 (Herwig7)	NNLO [99,100]
Z/γ^*	Sherpa2.2.1 (MG5_aMC@NLO)	NNPDF3.0NNLO	Sherpa2.2.1	NNLO [79]

ggF & VBF H→WW*: SR definition

Category	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 0 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 1 \text{ ggF}$	$N_{\text{jet},(p_T>30 \text{ GeV})} \ge 2 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} \ge 2 \text{ VBF}$
Preselection	Two isola	nted, different-flavor leptons $p_{T}^{lead} > 22 \text{ GeV}, p_{T}^{s}$ $m_{\ell\ell} > 10$ $p_{T}^{miss} > 20 \text{ GeV}$	$e^{(\ell)} = e, \mu$ with opposite $e^{(\ell)}$ $e^{(\ell)} = e^{(\ell)} + 15 \text{ GeV}$ $e^{(\ell)} = 600 \text{ GeV}$	Calculated by using co approximation method
Background rejection	$\Delta \phi_{\ell\ell,E_{\mathrm{T}}^{\mathrm{miss}}} > \pi/2$ $p_{\mathrm{T}}^{\ell\ell} > 30 \; \mathrm{GeV}$	$N_{b ext{-jet},(p_{\mathrm{T}}>20)}$ $\max(m_{\mathrm{T}}^{\ell}) > 50 \text{ GeV}$	$g_{\text{GeV})} = 0$ $m_{\tau\tau} < m_Z - 25 \text{ GeV}$	jet_0 (if $p_T > 30$ GeV
$\frac{H \to WW^* \to e\nu\mu\nu}{\text{topology}}$		$m_{\ell\ell} < 55 \text{ GeV}$ $\Delta \phi_{\ell\ell} < 1.8$	Fail central jet veto or fail outside lepton veto $ m_{jj} - 85 > 15 \text{ GeV}$ or $\Delta y_{jj} > 1.2$	Central jet veto outside lepton veto $m_{jj} > 120 \text{ GeV}$
Discriminating fit variable		m _T		DNN

ggF & VBF H→WW*: CR definition

CR	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 0 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 1 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} \ge 2 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} \ge 2 \text{ VBF}$	
$qq \rightarrow WW$	$\Delta \phi_{\ell\ellF^{ m miss}} > \pi/2$	$N_{b ext{-jet},(p_{\mathrm{T}}>20 ext{ GeV})} = 0$ $m_{\ell\ell} > 0$	80 GeV		
	$p_{\rm T}^{\ell\ell} > 30 \text{ GeV}$ $55 < m_{\ell\ell} < 110 \text{ GeV}$ $\Delta \phi_{\ell\ell} < 2.6$	$ m_{\tau\tau} - m_Z > 25 \text{ GeV}$ $\max(m_T^{\ell}) > 50 \text{ GeV}$	$m_{\tau\tau} < m_Z - 25 \text{ GeV}$ $m_{T2} > 165 \text{ GeV}$ Fail central jet veto or fail outside lepton veto $ m_{jj} - 85 > 15 \text{ GeV}$ or $\Delta y_{jj} > 1.2$	$m_{\rm T2}^2 = \min_{p_1'+p_2'=p_{\rm T}'} [\max\{r_1'\}_{r_1'+r_2'=r_{\rm T}'}]$	$m_{\rm T}^2(p_{\rm T}^a, p_1), m_{\rm T}^2(p_{\rm T}^b, p_2)\}],$
tīt/Wt	$N_{b\text{-jet},(20 < p_{\rm T} < 30 {\rm ~GeV})} > 0$	$N_{b\text{-jet},(p_{T}>30 \text{ GeV})} = 1$ $N_{b\text{-jet},(20 < p_{-}<30 \text{ GeV})} = 0$	$N_{b\text{-jet},(p_{\mathrm{T}}>20~\mathrm{GeV})}=0$	$N_{b\text{-jet},(p_{\mathrm{T}}>20~\mathrm{GeV})}=1$	
	$\Delta \phi_{\ell\ell F}$ Emiss $> \pi/2$	<i>b</i> -jet,(20< <i>p</i> _T <50 GeV)	$m_{\tau\tau} < m_{Z} - 25 \text{ GeV}$		
	$p_{\ell}^{\ell\ell} > 30 \text{ GeV}$	$\max(m_T^{\ell}) > 50 \text{ GeV}$	$m_{\ell\ell} > 80 \text{ GeV}$		
	$\Delta \phi_{\ell\ell} < 2.8$	max(m _T) > 50 Gev	$\Delta \phi_{\ell\ell} < 1.8$ $m_{T2} < 165 \text{ GeV}$ Fail central jet veto or fail outside lepton veto $ m_{jj} - 85 > 15 \text{ GeV}$ or $\Delta y_{jj} > 1.2$	Central jet veto outside lepton veto	
Z/γ^*		$N_{b-\text{jet},(p_{T}>2)}$	$_{0 \text{ GeV})} = 0$		
	$m_{\ell\ell} < no p_{\mathrm{T}}^{\mathrm{miss}}$: 80 GeV requirement	$m_{\ell\ell} < 55 { m GeV}$	$m_{\ell\ell} < 70 { m ~GeV}$	
	$\Delta \phi_{\ell\ell} > 2.8$	$m_{\tau\tau} > m_T$ $\max(m_T^\ell) > 50 \text{ GeV}$	z - 25 GeV Fail central jet veto or fail outside lepton veto $ m_{jj} - 85 > 15 \text{ GeV}$ or $\Delta y_{ji} > 1.2$	$ m_{\tau\tau} - m_Z \le 25 \text{ GeV}$ central jet veto outside lepton veto	

$ggF \& VBF H \rightarrow WW^*$: Results

	$\frac{\Delta \sigma_{\text{ggF+VBF}} \cdot \mathcal{B}_{H \to WW^*}}{\sigma_{\text{ggF+VBF}} \cdot \mathcal{B}_{H \to WW^*}}$	$\frac{\Delta \sigma_{\rm ggF} \cdot \mathcal{B}_{H \to WW^*}}{\sigma_{\rm ggF} \cdot \mathcal{B}_{H \to WW^*}}$	$\frac{\Delta \sigma_{\text{VBF}} \cdot \mathcal{B}_{H \to WW^*}}{\sigma_{\text{VBF}} \cdot \mathcal{B}_{H \to WW^*}}$
Source	[%]	[%]	[%]
Data statistical	4.6	5.1	15
uncertainties			
Total systematic	9.5	11	18
uncertainties		_	
MC statistical	3.0	3.8	4.9
uncertainties			
Experimental	5.2	6.3	6.7
uncertainties			
Flavor tagging	2.3	2.7	1.0
Jet energy scale	0.9	1.1	3.7
Jet energy resolution	2.0	2.4	2.1
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.7	2.2	4.9
Muons	1.8	2.1	0.8
Electrons	1.3	1.6	0.4
Mis-Id extrapolation	2.1	2.4	0.8
factors			
Pileup	2.4	2.5	1.3
Luminosity	2.1	2.0	2.2
Theoretical uncertainties	6.8	7.8	16
ggF	3.8	4.3	4.6
VBF	3.2	0.7	12
WW	3.5	4.2	5.5
Тор	2.9	3.8	6.4
Ζττ	1.8	2.3	1.0
Other VV	2.3	2.9	1.5
Other Higgs	0.9	0.4	0.4
Background	3.6	4.5	4.9
normalizations			
WW	2.2	2.8	0.6
Тор	1.9	2.3	3.4
Ζττ	2.7	3.1	3.4
Total	10	12	23

ggF: exp (b-jet ID, JER, Mis-id) and theory (jet multi, PS) comparable

VBF: (ME Matching, PS) + E_T Miss

WW and top related uncertainties dominant

VBF $H \rightarrow WW^*$: Deep Neural Network (DNN)

$ggF \& VBF H \rightarrow WW^*$

~ ·····

Uncertainty (fb) SM Value Experimental Signal Background Total Statistical systematics Theory prediction (fb) STXS bin $(\sigma_i \cdot \mathcal{B}_{H \to WW^*})$ (fb) Theory +480 -470 $+490 \\ -480$ +950 -910 +570+320ggH-0j, low $p_T^H p_T^H < 200 \text{ GeV}$ 7100 5870 ± 390 -530 -260 $+420 \\ -410$ ggH-1j, very low $p_T^H p_T^H < 60 \text{ GeV}$ $+800 \\ -820$ +380+80+5701140 1400 ± 190 -380-70 -600 ggH-1j, low $p_T^H 60 \le p_T^H < 120$ GeV +470+310+230+42+270540 970 ± 150 -470-310-230-47 -280ggH-1j, medium p_T^H 120 $\leq p_T^H < 200 \text{ GeV}$ +130 -120+100+60+10230 +50 160 ± 30 -100-60 -10-50 $+900 \\ -890$ +440+430+300+640ggH-2j, low $p_T^H p_T^H < 200 \text{ GeV}$ 1610 1010 ± 220 -440-420-150-650 ggH, high $p_{\rm T}^H p_{\rm T}^H \ge 200 \text{ GeV}$ $+100 \\ -100$ $+80 \\ -80$ $^{+40}_{-40}$ $^{+40}_{-20}$ $+40 \\ -40$ 260 122 ± 31 EW qqH-2j, low m_{ii} -low $p_T^H 350 \le m_{ii} < 700 \text{ GeV}$, +63 -62+46 $+31 \\ -34$ $^{+11}_{-14}$ +24 -266 109 ± 7 $p_{\rm T}^H < 200 \, {\rm GeV}$ +30 -27 $^{+15}_{-14}$ +8 -7 +11EW qqH-2j, medium m_{ii} -low p_T^H 700 $\leq m_{ii} < 1000$ GeV, +35 -3331 56 ± 4 -10 $p_{\rm T}^H < 200 \, {\rm GeV}$ +23 -21 $^{+9}_{-5}$ +5 -5 EW qqH-2j, high m_{ii} -low p_T^H 1000 $\leq m_{ii} < 1500$ GeV, +26-23 $^{+7}_{-7}$ 60 51 ± 4 $p_{\rm T}^H < 200 \, {\rm GeV}$ +5 +18 - 17 $^{+3}_{-3}$ EW qqH-2j, very high m_{ij} -low $p_T^H m_{ij} \ge 1500$ GeV, 57 +20 - 18+4 50 ± 4 $p_{\rm T}^H < 200 {\rm GeV}$ $^{+3}_{-3}$ EW qqH-2j, high $p_T^H m_{ii} \ge 350 \text{ GeV}, p_T^H \ge 200 \text{ GeV}$ $^{+16}_{-14}$ $^{+14}_{-13}$ $^{+4}_{-3}$ +4 -3 37 32 ± 1

Cross sections in each STXS bins

VH H→WW*: Signal strength and significance

Channel	POI / Z_0	Expected	Observed
Opposite_sign 2/	μ_{VH}	$1.00^{+1.02}_{-0.98}$	$1.94^{+1.07}_{-1.02}$
Opposite-sign 2t	Z_0	1.0	1.9
Same-sign 28	μ_{WH}	$1.00^{+0.61}_{-0.60}$	-0.08 ± 0.58
Sume sign 20	Z_0	1.6	0.0
31	μ_{WH}	$1.00^{+0.44}_{-0.40}$	$0.64^{+0.42}_{-0.37}$
50	Z_0	2.8	1.8
41	μ_{ZH}	$1.00^{+0.47}_{-0.39}$	$1.59^{+0.54}_{-0.47}$
	Z_0	3.1	4.5
Combined 1-POI	μ_{VH}	$1.00^{+0.27}_{-0.25}$	$0.92^{+0.25}_{-0.23}$
combined i i oi	Z_0	4.7	4.6
	μ_{WH}	$1.00^{+0.35}_{-0.33}$	$0.45^{+0.32}_{-0.30}$
Combined 2 POI	μ_{ZH}	$1.00^{+0.47}_{-0.39}$	$1.64_{-0.47}^{+0.55}$
Comonica 2-1 OI	Z_0^{WH}	3.3	1.5
	Z_0^{ZH}	3.1	4.6

VH H→WW*: Breakdown

Source	$\frac{\Delta(\sigma_{VH} \times \mathcal{B}_{H \to WW^*})}{\sigma_{VH} \times \mathcal{B}_{H \to WW^*}} \ [\%]$	$\frac{\Delta(\sigma_{WH} \times \mathcal{B}_{H \to WW^*})}{\sigma_{WH} \times \mathcal{B}_{H \to WW^*}} \ [\%]$	$\frac{\Delta(\sigma_{ZH} \times \mathcal{B}_{H \to WW^*})}{\sigma_{ZH} \times \mathcal{B}_{H \to WW^*}} \ [\%]$
Statistical uncertainties in data	22.3	57.9	28.4
Systematic uncertainties	13.3	36.6	9.9
Statistical uncertainties in simulation	6.4	14.4	5.9
Experimental systematic uncertainties	5.2	9.8	6.0
Electrons	1.2	1.8	1.6
Muons	2.5	2.8	4.1
Jet energy scale	0.7	2.3	0.5
Jet energy resolution	0.6	2.8	0.6
Flavour tagging	0.9	1.4	0.8
Missing transverse momentum	0.6	0.4	0.9
Pile-up	1.1	1.5	0.8
Luminosity	2.3	2.4	2.1
Mis-identified leptons	2.9	7.1	2.7
Charge-flip electrons	1.5	4.5	0.1
Theoretical uncertainties	6.0	18.6	4.7
WH	2.3	2.8	0.1
ZH	0.7	0.7	3.4
WW	1.0	3.3	0.3
$W(Z/\gamma^*)$ 0-jet	3.2	11.3	0.3
$W(Z/\gamma^*) \ge 1$ -jets	0.2	0.8	0.4
$Z(Z/\gamma^*)$	0.8	1.5	0.6
VVV	2.4	12.7	0.3
Тор	2.9	5.5	2.5
Z+jets	1.8	3.4	1.5
RNN shape uncertainty for $W(Z/\gamma^*)$	8.8	27.3	0.3
Floating normalisations	0.1	0.2	0.1
Total	26.0	71.0	30.1

VH H \rightarrow WW*: Same sign 21 channel

VBF H→WW* Differential XS: Break down

Uncertainty [%]			Uncertainty range [%]			
Source	$\sigma^{ m fid}$	p_{T}^{H}	$p_{\mathrm{T}}^{\ell\ell}, p_{\mathrm{T}}^{\ell_1}, p_{\mathrm{T}}^{\ell_2}, \Delta y_{\ell\ell} , \ \Delta \phi_{\ell\ell} , \cos(heta_\eta^*)$	$m_{\ell\ell}$	$p_{\mathrm{T}}^{j_1}, p_{\mathrm{T}}^{j_2}, \ \Delta y_{jj} , \Delta \phi_{jj}$	m_{jj}
Signal modeling	5	< 1–7	< 1–7	< 1–19	< 1-8	2–7
Signal parton shower	< 1	< 1–2	< 1-1.8	< 1-10	< 1-1.8	< 1–7
$t\bar{t}$ modeling	6	1.7 - 30	3-13	3-80	3-10	1.2 - 70
WW modeling	4	< 1–12	3-11	2-90	3-10	3-40
Z/γ^* + jets modeling	4	< 1–19	2-18	4-30	3-13	2 - 50
ggF modeling	5	4.0-28	3.4-10	2.6-12	2.3-9.0	1.4-86
Mis-Id background	< 1	< 1–12	1.1–5	< 1-19	1–3	< 1-40
Jets & Pile-up & E _T ^{miss}	5	8-60	6-30	6-120	9-30	9-130
<i>b</i> -tagging	< 1	< 1–9	< 1–3	< 1–19	1.1-3	< 1-40
Leptons	1.5	3-17	2–9	1.2-13	1.7–7	< 1-16
Luminosity	1.5	1.7 - 2	1.3-1.9	< 1-4	1.5-2	< 1-1.9
MC statistics	5	10-40	6–30	6-180	8-30	7–90
Total systematics	13	19-90	13-60	12-180	15-50	15-200
Data statistics	20	50-160	30-110	30-400	40-100	50-300
Total uncertainty	23	50-190	40–120	30-500	40–100	50-400

VBF H→WW* Differential XS

$VBF H \rightarrow WW^* Differential XS$

				95% Confidence interval [TeV ⁻²]	
Wilson coefficients	Operator structure	Fit distr	Paramater order	Expected	Observed
C _{HW}	$H^\dagger H W^n_{\mu u} W^{n\mu u}$	$\Delta \phi_{jj}$	lin	[-1.7, 1.6]	[-2.6, 0.60]
			lin + quad	[-1.4, 1.4]	[-1.8, 0.61]
C _{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$	$\Delta \phi_{jj}$	lin	[-5.9, 6.4]	[-6.7, 4.6]
			lin + quad	[-0.59, 0.66]	[-0.60, 0.66]
C_{HWB}	$H^{\dagger} au^{n}HW^{n}_{\mu u}B^{\mu u}$	$\Delta \phi_{jj}$	lin	[-10, 9]	[-14, 5.9]
			lin + quad	[-1.2, 1.1]	[-1.2, 1.1]
C_{Hq1}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}\gamma^{\mu}q)$	p_{T}^{j1}	lin	[-12, 15]	[-6.9, 22]
			lin + quad	[-1.9, 1.7]	[-2.2, 2.0]
C_{Hq3}	$(H^{\dagger}i\overset{\leftrightarrow}{D}{}_{u}^{n}H)(\bar{a}\tau^{n}\gamma^{\mu}a)$	p_{T}^{j1}	lin	[-0.56, 0.47]	[-0.74, 0.30]
			lin + quad	[-0.43, 1.2]	[-0.56, 0.43]
C_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}\gamma^{\mu}u)$	p_{T}^{j1}	lin	[-8.3, 6.9]	[-11, 4.2]
			lin + quad	[-2.0, 2.6]	[-2.5, 3.1]
c_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}\gamma^{\mu}d)$	$p_{ m T}^{j1}$	lin	[-21, 25]	[-13, 33]
	3 Kanada Kanada		lin + quad	[-3.0, 2.7]	[-3.7, 3.4]
$C_{H\tilde{W}}$	$H^\dagger H ilde W^n_{\mu u} W^{n\mu u}$	$\Delta \phi_{jj}$	lin	[-1.7, 1.7]	[-1.8, 1.3]
			lin + quad	[-1.4, 1.4]	[-1.1, 1.4]
$C_{H\tilde{B}}$	$H^\dagger H { ilde B}_{\mu u} B^{\mu u}$	$\Delta \phi_{jj}$	lin	[-28, 28]	[-32, 22]
			lin + quad	[-0.62, 0.62]	[-0.63, 0.63]
$C_{H\tilde{W}B}$	$H^{\dagger} au^{n}H ilde{W}^{n}_{\mu u}B^{\mu u}$	$\Delta \phi_{jj}$	lin	[-15, 15]	[-17, 12]
			lin + quad	[-1.2, 1.1]	[-1.2, 1.1]

The parametrizations for cHW~B and cHu are found to be poorly described by a linear and a linear plus quadratic function of the Wilson coefficients for values beyond the sensitivity of the measurement, i.e., outside the limit ranges. This effect is due to a dependence of the fiducial selection efficiency on the EFT parameters for extreme values of these couplings and not to a data unfolding bias. The associated bias was studied and its effect was assigned as an uncertainty to the EFT parametrization for those couplings. It was found to have negligible impact on the limits, i.e., about an order of magnitude smaller than the impact of systematic uncertainties assigned to the signal modeling 35

$ggF H \rightarrow WW^*$ Differential XS: Tikhonov regularization

A Tikhonov regularization term is included in the likelihood as a penalty term:

Sov. Math. Dokl. 5, 1035/1038 (1963)

$$P(\vec{x}) = \exp\left(-\tau \cdot \left(\sum_{i=2}^{N_{\text{bin}}-1} \left((x_{i-1} - x_i) - (x_i - x_{i+1})\right)^2\right)\right)$$

regularization parameter τ

with x being the quantity for which the curvature should be regularized. For this analysis, the measured particlelevel signal strength, $x_i = \frac{s_i^t}{s_i^{t,exp}}$, is chosen as the regularized quantity <u>Eur. Phys. J. C 80, 942 (2020)</u>

The choice of a value for the regularization parameter τ is a trade-off between minimizing statistical fluctuations on the one hand, and the potential bias induced by adding an artificial constraint to the measurement on the other.

ggF H→WW* Differential XS

Table 6 Relative cross section uncertainties broken down for each bin in $p_{\rm T}^H$

Contribution	0 - 30 GeV $30 - 60 GeV$		60 – 120 GeV	120 – 1000 GeV	
Total relative uncertainty	19	51	108	62	
Total systematic uncertainty	17	41	81	45	
Statistical uncertainties from data	8.5	29	72	43	
Statistical uncertainties from simulation	6.2	15	17	18	
Experimental systematic uncertainty	10	24	58	31	ΤI
Flavour tagging	4.9	6.1	13	18	0
Jet Energy Scale	4.9	17	30	21	to
Jet Energy Resolution	4.8	8.4	12	10	
Missing transverse energy	4.6	8.2	11	8.2	Т
Muons	4.6	4.2	4.8	2.3	to
Electrons	3.2	2.2	2.5	1.1	i.c
Misidentified objects	3.9	10	3.3	1.3	~
Pile-up	3.8	1.2	6.9	4.4	d
Luminosity	2.7	4.5	3.5	2.8	р
Systematic uncertainty from theory	11	27	23	25	
On gluon-fusion production	6.1	7.1	4.7	5.2	d
On Vector Boson Fusion production	2.4	1.8	2.7	3.2	m
On top quark production	4.3	20	18	21	
On decays of $Z \to \tau \tau$	4.2	5.9	2.2	3.9	
On the WW background	7.3	10	12	6.0	
On other diboson processes	5.9	14	7.8	8.8	
Background normalization factors	2.3	0.7	0.9	0.6	

The uncertainties with the largest impact on the results include uncertainties related to jet and muon reconstruction.

Theory uncertainties associated with the top-quark and W W backgrounds,

and with the difficulty of modelling V γ processes also play a leading role

data-driven background estimates for misidentified objects

$ggFH \rightarrow WW^*$ Differential XS

Variable	Data statistical (%)	MC statistical (%)	Experimental (%)	Theory (%)
Уее	14–22	5.3-10	6.9–15	5.9-15
$p_{\mathrm{T}}^{\ell\ell}$	15-29	6.4–14	8.2-31	6.8-27
$p_{\mathrm{T}}^{\ell 0}$	13-28	6.3-13	9.3–28	14-34
$\Delta \phi_{\ell\ell}$	11–39	6.1–18	7.8–22	13-27
Уј0	23-51	12–26	21-54	26-58
$\cos \theta^*$	11–15	5.8-7.6	8.5-11	8.9-14
p_{T}^{H}	8.5-72	6.2-18	10-58	12-27
mee	12-25	5.6-11	7.5–15	7.3-20
yee vs N _{jet}	9.0-62	3.9–25	8.0-20	5.0-53
$p_{\rm T}^{\ell\ell}$ vs $N_{\rm jet}$	9.8-36	4.7-20	12-41	9.9-50
$p_{\rm T}^{\ell 0}$ vs $N_{\rm jet}$	9.6-50	5.8-20	10-35	9.4–74
$\Delta \phi_{\ell\ell}$ vs $N_{\rm jet}$	9.6-65	5.6-18	6.8-31	14-74
$\cos \theta^*$ vs $N_{\rm jet}$	13-50	6.8–25	7.7–39	8.9-58
$m_{\ell\ell}$ vs $N_{\rm jet}$	12–152	5.7-44	8.9-58	7.2-82

 $\cos \theta^* = |\tanh(\frac{1}{2}\Delta \eta_{\ell\ell})| \quad \Delta \eta_{\ell\ell}$ is the lepton pseudorapidity difference

Tikhonov-regularized in-likelihood unfolding algorithm VS iterative Bayesian unfolding

Tikhonov-regularized in-likelihood unfolding

iterative Bayesian unfolding

ggF H→WW* Differential XS

40