

Measurement of Higgs boson mass and width with the ATLAS detector

Higgs 2023, Beijing

Zihang Jia^{1,2} on behalf of the ATLAS collaboration

¹Institute of High Energy Physics, Chinese Academy of Science

²Nanjing University

2023/11/29

Introduction

- The Higgs boson plays a unique role in the standard model (SM) giving masses to other particles via electroweak spontaneous symmetry breaking.
- Since its discovery in 2012, efforts have been made to determine its properties.
- This talk will focus on the latest ATLAS measurements of the Higgs boson mass m_H and width Γ_H .

Standard Model of Elementary Particles

Higgs boson mass

2023/11/29

Higgs boson mass measurement

The Higgs mass m_H is a free parameter of the standard model that must be determined experimentally

Measurements are made in the $H \rightarrow ZZ^* \rightarrow 4l$ and $H \rightarrow \gamma\gamma$ channels due to their **excellent mass resolution**

→ Previous ATLAS results with partial Run 2 + Run 1 data gave a mass of m_H = 124.97 ± 0.24 GeV

The signal is a narrow resonant peak above a continuum background in the m_{4l} distribution

Main background from non-resonant ZZ* production (~89% of the total background yield)

Select events containing at least four isolated leptons emerging from a common vertex

Four final states considered: 4μ , 4e, $2\mu 2e$, $2e2\mu$

Signal-background discriminant D_{NN} : neural network (NN) classifier against the ZZ* background

Per-event resolution σ_i : quantile regression neural network (QRNN) to predict event-level m_{4l} resolution

 \rightarrow Output is the predicted quantile of the difference between the reconstructed m_{4l} and the true m_{4l}

Phys. Lett. B 843 (2023) 137880

Higgs mass extraction: maximum-likelihood fit in the four decay channels across three variables: m_H , D_{NN} , σ_i

- Signal model: Double-sided Crystal-Ball, capturing dependencies on m_H , D_{NN} and σ_i
- **Background model:** 2D probability density function (m_H, D_{NN}) smoothed using **kernel estimation**

Run 2: m_H = 124.99 ± 0.18 (stat.) ± 0.04 (syst.) GeV

Phys. Lett. B 843 (2023) 137880

Systematic Uncertainty	Contribution [MeV]
Muon momentum scale	± 28
Electron energy scale	± 19
Signal-process theory	± 14

Still statistical uncertainty dominant

Phys. Lett. B 843 (2023) 137880

Sources of improvements

- **Neural-network-based** signal-background discriminant D_{NN} (precision improved by 2%)
- Event-by-event m_{4l} resolution σ_i in the analytic model (uncertainty reduced by 1%)
- New high-precision **muon momentum calibration**

The muon scale uncertainty was reduced **by a factor of 4** compared to previous results.

$H \rightarrow \gamma \gamma$ channel

The signal is a narrow peak over a large non-resonant background in the $m_{\gamma\gamma}$ distribution

Main background from non-resonant $pp \rightarrow \gamma\gamma$ +partons production

Select events with **two good quality photons** with $p_T^{\gamma}/m_{\gamma\gamma} > 0.35$ (0.25)

$H \rightarrow \gamma \gamma$ channel

To increase the sensitivity of the measurement

- 14 mutually exclusive categories based on
- The number of **converted photons**
- **Pseudorapidity** of photon pairs
- Diphoton transverse momentum

Phys. Lett. B 847 (2023) 138315

- Signal model: Double-sided Crystal-Ball function with peak position and resolution parameterized as functions of m_H
- Background model: chosen among exponential, power-law or an exponentiated 2nd-order polynomial functions empirically for each category based on goodness-of-fit

 m_H is evaluated by signal+background maximum-likelihood fit

$H \rightarrow \gamma \gamma$ channel

Run 2: m_H = 125.17 ± 0.11 (stat.) ± 0.09 (syst.) GeV

Source	Impact [MeV]
Photon energy scale	83
$Z \to e^+ e^-$ calibration	59
$E_{\rm T}$ -dependent electron energy scale	44
$e^{\pm} \to \gamma$ extrapolation	30
Conversion modelling	24
Signal–background interference	26
Resolution	15
Background model	14
Selection of the diphoton production vertex	5
Signal model	1
Total Phys. Lett. B 847 (2023) 1	38315 90

Sources of improvements:

- Improved estimation of the photon energy scale with reduced uncertainties
- New photon reconstruction algorithm with better energy resolution

2023/11/29

Optimised event classification strategy

The photon energy scale systematics improved by a factor of ~4 (ATLAS Run 2 Calibration paper)

Higgs boson mass

Now statistical uncertainty dominated again, unlike the intermediate Run 2 publication

Phys. Lett. B 847 (2023) 138315

Combined measurement

Combination of the ATLAS Run 1 + Run 2 m_H measurement in $H \rightarrow ZZ^* \rightarrow 4l$ and $H \rightarrow \gamma\gamma$ final states

→ Current most precise m_H measurement reaching a precision of 0.09%

Higgs boson width

Higgs boson width measurement

The **Higgs width** Γ_{H} contains information about the Higgs interactions with all other fundamental particles

Direct measurement: limited by detector resolution (predicted <u>4.1 MeV</u> compared with <u>1-2 GeV</u>)

Indirect measurement: rely on both **on-shell** and **off-shell** Higgs boson production

<u>JHEP 08 (2012) 116</u>

 $2 M_W$

$H^* \rightarrow ZZ$ channel

Negative interference between the off-shell Higgs boson process and the continuum background

The signal is a **deficit** in **gluon fusion (ggF)** or **electroweak (EW VBF+VH)** production

> Three signal regions (SRs) targeting both production modes:

EW SR: \geq 2 jets with p_T > 30 GeV, well-separated leading jets ($|\Delta \eta_{ij}| > 4$)

Mixed SR: Failing EW SR but with exactly 1 forward jet ($|\Delta \eta_{jj}| > 2.2$)

ggF SR: All other events passing event selection

Distributions of discriminating variables are fitted simultaneously in all SRs

Control Regions also included in the fit to constrain the background normalisation

$H^* \rightarrow ZZ$ channel

> Two final states are separately analysed and then combined to obtain the final results

1.5

 O_{NN}^{EW}

 $ZZ \rightarrow 4l$

Fully reconstructible final state Clean signature, main background qqZZ **Observable:** Neural network (NN) output

Phys. Lett. B 846 (2023) 138223 Events Events ATLAS Data Data ATLAS 10° Systematic uncertainties Systematic uncertaintie √s = 13 TeV, 139.0 fb¹ √s = 13 TeV, 139.0 fb 10⁵ 10 $aa \rightarrow ZZ$ qq → ZZ $gg \rightarrow (H^* \rightarrow) ZZ$ EW Signal Region $aa \rightarrow (H^* \rightarrow) ZZ$ $qq \rightarrow (H^* \rightarrow) ZZ+2j$ 10 Other Backgrounds 10⁴ $aa \rightarrow (H^* \rightarrow) ZZ+2i$ EW SR Other Backgrounds 10 $aa \rightarrow H^* \rightarrow ZZ$ 10^{3} $aa \rightarrow H^* \rightarrow ZZ$ $qq \rightarrow H^* \rightarrow ZZ+2i$ 10 102 10 10- 10^{-2} 10^{-2} Data / Exp. Data / Exp. Data / Exc Data / Exp. 1.5 -- 1 + EW I / Exp. 1 + EW S / Exp. 0.5 - 1 + ggF I / Exp. - 1 + ggF S / Exp. - 1 + EW I / Exp. ggF S / Exp. - 1 + EW S / Exp 0<u>-</u>1.5 0.5 1.5 -0.5 0.5 -0.5_1 O_{NN}

$ZZ \rightarrow 2l2\nu$

Six times higher branching ratio

Larger background contamination

Observable: Transverse ZZ mass m_T^{ZZ}

Phys. Lett. B 846 (2023) 138223

$H^* \rightarrow ZZ$ channel

Direct measurement of off-shell H production

 $\mu_{off-shell} = 1.1^{+0.7}$ -0.6

Background-only hypothesis rejected at 3.3 σ

Combined with on-shell 4*l* channel measurement (Eur. Phys. J. C 80 (2020) 942)

> Higgs width determination

 $\Gamma_H = 4.5^{+3.3}_{-2.5} \,\mathrm{MeV}$

Compatible with the SM prediction at 4.1 MeV

Conclusion

m_H = 125.11 ± 0.09 (stat.) ± 0.06 (syst.) = 125.11 ± 0.11 GeV

Run 1 + Run 2 Higgs mass measurement by combining $H \rightarrow ZZ^* \rightarrow 4l$ and $H \rightarrow \gamma\gamma$ final states

Current most precise m_H measurement with an uncertainty of 0.09%

Benefit from excellent Run 2 calibration of e, γ, μ

Statistical uncertainty remains dominant (as in Run 1)

Run 2 indirect Higgs width measurement from off-shell Higgs production in ZZ channel

First evidence of off-shell Higgs production with a significance of 3.3σ

Off-shell yields are still limited by statistics

Room for improvements in the **systematic uncertainties** (e.g. theoretical modeling)

Stay tuned for more Run 2 measurements and for Run 3!

Phys. Lett. B 843 (2023) 137880 Phys. Lett. B 847 (2023) 138315 arXiv:2308.04775 (accepted by PRL)

Phys. Lett. B 846 (2023) 138223

Thank you for your attention!

Back-up

References

ATLAS $H \rightarrow ZZ^* \rightarrow 4l \ m_H$ Run 2 measurement: <u>Phys. Lett. B 843 (2023) 137880</u>, <u>Aux figures</u> HIGG-2020-07

ATLAS $H \rightarrow \gamma \gamma m_H$ Run 1 measurement: <u>Phys. Rev. D 98 (2018) 052005</u>, <u>Aux figures</u> HIGG-2016-21

ATLAS $H \rightarrow \gamma \gamma m_H$ Run 2 measurement: Phys. Lett. B 847 (2023) 138315, arXiv:2308.07216, Aux figures HIGG-2019-16

ATLAS $H \rightarrow ZZ^* \rightarrow 4l$ and $H \rightarrow \gamma\gamma m_H$ partial Run 2 measurement: <u>Phys. Lett. B 784 (2018) 345</u>, <u>Aux figures</u> HIGG-2016-33

ATLAS $H \rightarrow ZZ^* \rightarrow 4l$ and $H \rightarrow \gamma\gamma m_H$ Run 1 + Run 2 measurement: <u>arXiv:2308.04775</u>, <u>Aux figures</u> HIGG-2022-20

ATLAS+CMS m_H Run 1 measurement: PhysRevLett.114.191803

ATLAS Run 2 electron and photon energy calibration: arXiv:2309.05471

ATLAS $H^* \rightarrow ZZ \Gamma_H$ Run 1 measurement: Phys. Lett. B 786 (2018) 223, Aux figures HIGG-2017-06

ATLAS $H^* \rightarrow ZZ \Gamma_H$ Run 2 measurement: Phys. Lett. B 846 (2023) 138223, arXiv:2304.01532, Aux figures HIGG-2018-32

CMS m_H and Γ_H Run 2 measurement: <u>HIG-21-019</u>

CMS Γ_H partial Run 2 measurement: <u>Nature Phys. 18 (2022) 1329</u>

mн

Higgs boson mass

The Higgs mass m_H is a free parameter of the standard model that must be determined experimentally

- It governs the coupling strengths of the Higgs boson with the other SM particles
 - It is also the value assumed by the experimental collaborations when estimating the acceptances, efficiencies and signal models used in their analyses and to report their measured rates
- It is one of the inputs in global fits to the measurements of electroweak observables
- It determines the shape of the Higgs potential and thus the stability of the electroweak vacuum

$$\mathcal{L} \subset V(\phi) = V_0 + \frac{1}{2} \frac{m_H^2}{2} H^2 + \lambda \nu H^3 + \frac{1}{4} \lambda H^4$$

ATLAS m_H measurement in $H \rightarrow ZZ^* \rightarrow 4l$ channel

FSR recovery and the Z mass constraint

FSR recovery (resolution improved by 1%): From simulation, it is estimated that $\sim 3\%$ of signal events are affected by FSR, recovery algorithm is used to target and recover these FSR particles.

Z mass constraint (resolution improved by 17%): The leading lepton pair is predominantly produced from the decay of an **on-shell** Z-boson. ZMC allows for an improvement in the 4-lepton mass resolution by **constraining the** m_{12} **to the Z line shape** using the lepton momentum and its uncertainties.

ATLAS m_H measurement in $H \rightarrow ZZ^* \rightarrow 4l$ channel

Likelihood

- In general the model we want is: $\mathcal{L}(m_H|\mathbf{x}) = \mathcal{L}(m_H|m_{4\ell}, D, \sigma) = \prod_i P(m_{4\ell}^i, D^i, \sigma^i|m_H)$
- · However, we do not have infinite MC statistics and computing so we must simplify
 - For signal we can decompose as: $P_s(m_{4\ell}, D, \sigma | m_H) = P_s(m_{4\ell} | D, \sigma, m_H) \cdot P_s(D, \sigma | m_H) = P_s(m_{4\ell} | D, \sigma, m_H) \cdot P_s(D | \sigma, m_H) \cdot P_s(\sigma | m_H)$
 - For the CONF, we fitted a DCB in 4 bins of D and in each channel, ignoring the last term

$$P_s(m_{4\ell}|D,\sigma,m_H) = \sum_{j \in D_{bins}} DCB(\mu = f^j_{\mu}(m_H), w = f^j_{\sigma}(\sigma), \alpha^j_{Lo}, n^j_{Lo}, \alpha^j_{Hi}, n^j_{H}|\sigma)$$

- This round, we want to make the signal continuous on D to simplify the implementation of systematics on the Discriminant side
- For background we can decompose as: $P_b = P_b(m_{4\ell}, D) \cdot P_b(\sigma)$
- Where in the last round we smoothed $P_b(m_{4\ell}, D) = \sum_{j \in D_{bins}} P_b(m_{4\ell})^j$
- Now aim to use P(m₄, D) to take into account the full dependance on discriminant -For binned setup, had to assign large sys to account variation of resolution vs D

ATLAS m_H measurement in $H \rightarrow ZZ^* \rightarrow 4l$ channel

The improvement of muon scale systematics

Partial Run 2 Phys. Lett. B 784 (2018) 345

Systematic effect	Uncertainty on $m_H^{ZZ^*}$ [MeV]	-
Muon momentum scale	40	-
Electron energy scale	26	
Pile-up simulation	10	
Simulation statistics	8	

Run 2 Phys. Lett. B 843 (2023) 137880

Systematic Uncertainty	Contribution [MeV]
Muon momentum scale	± 28
Electron energy scale	± 19
Signal-process theory	± 14

Categorization scheme

Gains on total $m_{\rm H}$ uncertainty based solely on the categorization

pڀ²

- -17% compared to inclusive measurement (1 category)
- -6% compared with 36 fb^{-1} analysis (31 categories)
- -3% compared to full Run2 STXS/coupling (101 categories)

thrust axis

Signal modeling

- Model m_H dependency of the DSCB parameters using signal MC samples at different m_H
 - Linear dependence for peak and resolution

 $\mu_{\rm CB}(m_{\rm H}) = m_{\rm H} + B_{\mu_{\rm CB}} + A_{\mu_{\rm CB}}(m_{\rm H} - 125 \text{ GeV})$ $\sigma_{\rm CB}(m_{\rm H}) = B_{\sigma_{\rm CB}} + A_{\sigma_{\rm CB}}(m_{\rm H} - 125 \text{ GeV})$ $\alpha_{\rm Low}(m_{\rm H}) = \alpha_{\rm Low} \qquad n_{\rm Low}(m_{\rm H}) = n_{\rm Low}|_{125 \text{ GeV}}$ $\alpha_{\rm High}(m_{\rm H}) = \alpha_{\rm High} \qquad n_{\rm High}(m_{\rm H}) = n_{\rm High}|_{125 \text{ GeV}}$

- Signal yield variation with $m_{\rm H}$ parameterized with $2^{\rm nd}$ -order polynominal, per category and prod-mode
- Signal model extensively cross-checked internally (global vs 125 GeV) and on the final workspace: most extreme impact on $m_{\rm H}$ always ≤ 15 MeV

Background modeling

- χ^2 probability > 1% when fitted to the background template
- the fitted signal yield (the 'spurious signal') < 10% of the expected signal yield
- the fewest degrees of freedom

The improvement of photon energy scale systematics

Only η -dependent energy scale factors were derived from 2015–2016 data

The possible E_T -dependence of the data-to-MC electron energy scale correction was accounted for

Systematic uncertainties

Additional and secondary systematic uncertainties are included in the likelihood model

- Signal and background modeling: effect on $m_{\rm H}$ of a wrong functional form modelling
 - Evaluated injecting sig (bkg) MC sample over a bkg (sig) Asimov and computing the $m_{\rm H}$ shift
 - Effect uncorrelated among categories, impact of 5 (18) MeV for signal (background)
- Interference between $pp \rightarrow \gamma\gamma$ and $pp \rightarrow H \rightarrow \gamma\gamma$ processes: causing a shift of the $m_{\rm H}$
 - \blacktriangleright Evaluated by injecting interference MC sample over a S+B Asimov and computing the $m_{\rm H}$ shift
 - Expected impact of 24 MeV. Decided not to correct for this
- Photon energy resolution uncertainties
 - Evaluated as interquantile difference of $m_{\gamma\gamma}$ distribution per category, applied on width of DSCB
- Photon conversion reconstruction affecting category migrations
 - Estimated with data/MC comparison in $Z \rightarrow \ell \ell \gamma$ events, correlated to corresponding scale effect
- NN vertex selection effect on $m_{\rm H}$ (5 MeV)
 - Estimated with $Z \rightarrow ee$ data/MC comparision where *e* are treated as unconverted photons
- Lumi / BR $\gamma\gamma$ / QCD scale / PDF+ α_s / Parton shower / Spurious signal
 - All included and with null impact on $m_{\rm H}$

_	
Source Syste	ematic uncertainty on $m_H^{\gamma\gamma}$ [MeV]
EM calorimeter cell non-linearity	± 180
EM calorimeter layer calibration	± 170
Non-ID material Partial	Run 2 ± 120
ID material	±110
Lateral shower shape Phys. Lett. B 7	$(2018) 345 \pm 110$
$Z \rightarrow ee$ calibration	±80
Conversion reconstruction	± 50
Background model	± 50
Selection of the diphoton production vertex	± 40
Resolution	± 20
Signal model	± 20
Source Sys	tematic uncertainty in m_H [MeV]
Photon energy scale	± 83
$Z \rightarrow e^+ e^-$ calibration	± 59
$E_{\rm T}$ -dependent electron energy scale	± 44
$e^{\pm} \rightarrow \gamma$ extrapolation Ru	n 2 ±30
Conversion modelling	±24
Signal-background interference arXiv:230)8.04775 ±26
Resolution	±15
Background model	± 14
Selection of the diphoton production vertex	± 5
Signal model	± 1
	1.00

Impact extracted by fixing group of NPs and taking the difference with total uncertainty

The observed and expected yields together with their uncertainties

Process	ggF SR	Mixed SR	EW SR
$gg \rightarrow (H^* \rightarrow)ZZ$	341 ± 117	42.5 ± 14.9	11.8 ± 4.3
$gg \to H^* \to ZZ$	32.6 ± 9.07	3.68 ± 1.03	1.58 ± 0.47
$gg \rightarrow ZZ$	345 ± 119	43.0 ± 15.2	11.9 ± 4.4
$qq \rightarrow (H^* \rightarrow) ZZ + 2j$	23.2 ± 1.0	2.03 ± 0.16	9.89 ± 0.96
$qq \rightarrow ZZ$	1878 ± 151	135 ± 23	22.0 ± 8.3
Other backgrounds	50.6 ± 2.5	1.79 ± 0.16	1.65 ± 0.16
Total expected (SM)	2293 ± 209	181 ± 29	45.3 ± 10.0
Observed	2327	178	50

$ZZ \rightarrow 4l$

$ZZ \rightarrow 2l2\nu$

Process	ggF SR	Mixed SR	EW SR
$gg \rightarrow (H^* \rightarrow)ZZ$	210 ± 53	19.7 ± 4.9	4.29 ± 1.10
$gg \to H^* \to ZZ$	111 ± 26	10.9 ± 2.5	3.26 ± 0.82
$gg \rightarrow ZZ$	251 ± 66	23.4 ± 6.2	5.31 ± 1.46
$qq \rightarrow (H^* \rightarrow) ZZ + 2j$	14.0 ± 3.0	1.63 ± 0.17	4.46 ± 0.50
$qq \rightarrow ZZ$	1422 ± 112	80.4 ± 11.9	7.74 ± 2.99
WZ	678 ± 54	51.9 ± 6.9	7.89 ± 2.50
Z+jets	62.3 ± 24.3	7.51 ± 6.94	0.62 ± 0.54
Non-resonant- <i>ll</i>	106 ± 39	9.17 ± 2.73	1.55 ± 0.42
Other backgrounds	22.6 ± 5.2	1.62 ± 0.25	1.40 ± 0.10
Total expected (SM)	2515 ± 165	172 ± 17	28.0 ± 4.1
Observed	2496	181	27

Interference effects

- Yield dependence on $\mu_{off-shell}$ is not linear
- Asymptotic approximation does not hold
- Confidence intervals have to be derived using the **Neyman construction**
- 5-10% more conservative

The expected curve is flatter than the observed due to the effect of a **downward fluctuation in the data** and **the parabolic shape of the yield versus \mu curve**, which arises due to the $\sqrt{\mu}$ dependence of the interference

The likelihood profile as a function of two off-shell signal strength parameters for the ggF and EW production modes The likelihood profile as a function of the ratio of on-shell and off-shell coupling modifiers

Systematic uncertainties

Systematic Uncertainty Fixed	$\mu_{\text{off-shell}}$ value at which $-2 \ln \lambda(\mu_{\text{off-shell}}) = 4$
Parton shower uncertainty for $gg \rightarrow ZZ$ (normalisation)	2.26
Parton shower uncertainty for $gg \rightarrow ZZ$ (shape)	2.29
NLO EW uncertainty for $qq \rightarrow ZZ$	2.27
NLO QCD uncertainty for $gg \rightarrow ZZ$	2.29
Parton shower uncertainty for $qq \rightarrow ZZ$ (shape)	2.29
Jet energy scale and resolution uncertainty	2.26
None	2.30

Phys. Lett. B 846 (2023) 138223

- Constraints are statistically limited
- Leading uncertainties from theoretical modelling, mainly missing higher order for background and Parton shower

Higgs production and decay modes

Higgs production and decay modes

