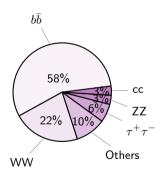
Measurements of Higgs Boson Properties in Decays to Two Tau Leptons with the ATLAS Detector

Tong PAN on behalf of the ATLAS collaboration

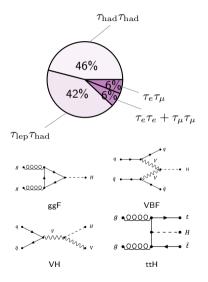
Higgs 2023 Conference

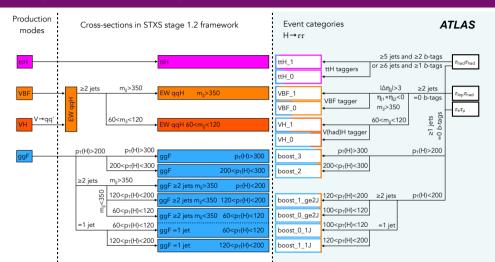

Motivation

- The characterization of the Higgs boson continued during the Run-2 data-taking period between 2015 and 2018.
- Full Run-2 dataset ($\int \mathcal{L}dt = 139 \text{ fb}^{-1}$, $\sqrt{s} = 13 \text{ TeV}$) contains about 30 times more Higgs Bosons than its Run-1 counterpart^a, which is used for the measurements of Higgs boson production and decay rates.
- $H \to \tau \tau$ (branching ratio: 6%) channel is particularly sensitive to the Higgs boson's Yukawa coupling
- \bullet ATLAS observed $H \to \tau \tau$ for the first time in 36 fb $^{-1}$ analysis b and measured
 - total cross-section
 - cross-sections for ggF and VBF

This talk:

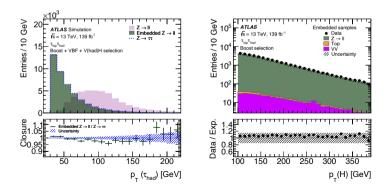
- Cross-section measurements
- \bullet Higgs boson \mathcal{CP} property


^aNature 607, 52–59 (2022) ^bPhysRevD.99.072001

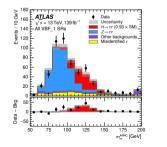

Cross-section Measurements

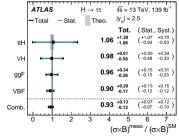
- $H \to \tau \tau$ cross-section measurement with ATALS full Run-2 dataset ${}^{\rm a}.$
- 4 Higgs production modes: ggF, VBF, V(\rightarrow qq)H, ttH($\tau_{had}\tau_{had}$)
- STXS^b: physical cross sections that are defined in mutually exclusive regions of phase space ("bins").
- Various improvements compared to previous measurement with 36 ${\rm fb}^{-1}$:
 - VBF, VH, ttH are further split with Boost Decision Tree (BDT) taggers into two subcategories: suffixed_1/0
 - STXS measurement performed in six bins for ggF
 - Kinematic embedding to control $Z \to \tau \tau$ using $Z \to \ell \ell$
 - Not including $\tau_e\tau_e+\tau_\mu\tau_\mu$ to prevent from large uncertainties in $Z{+}{\rm jets}$ background modeling

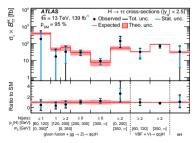
a JHEP08(2022)175
bhttps://arxiv.org/abs/1906.02754


STXS Stage 1.2 and Event Categorization

4/18


$Z \rightarrow \tau \tau$ Background Modeling Using $Z \rightarrow \ell \ell$ Events


- $Z \to \tau \tau$ + jets is the dominant background in this analysis
- Better resolution of kinematics in the $Z \rightarrow \ell \ell$ than in the $Z \rightarrow \tau \tau$ one due to the absence of ν and the excellent momentum resolution for electrons and muons
- Kinematic embedding to control $Z \to \tau \tau$ modeling using control regions based on $Z \to \ell \ell$ process
- The embedded $Z \rightarrow \ell \ell$ control regions are used in the fit to scale $Z \rightarrow \tau \tau$ background.



Measured Cross-sections

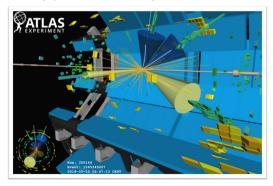
- Cross-sections measured inclusively, per production mode and in STXS bins
- Among the measured production modes, highest precision on VBF
- $\bullet\,$ In the SXTS ggF measurement, better precision at high $p_T(H)$
- Similar statistic/systematic uncertainty contribution
- Dominant systematic uncertainty: Signal modeling
- The observed uncertainty in the cross-section determination achieved ±13.9% (⁺²⁸/₋₂₅% for 36 fb⁻¹ measurement).
- All results are in agreement with the Standard Model predictions.

Higgs \mathcal{CP} property in $H \rightarrow \tau \tau$ decay channel

Theoretical Motivation

The problem of baryon asymmetry in the universe (BAU):

- The net surplus of matter over antimatter throughout the universe
- Sakharov Conditions (1967):
 - $\bullet\,$ Baryon number B violation
 - $\bullet~\mathcal{C}\text{-symmetry}$ and $\mathcal{CP}\text{-symmetry}$ violation
 - No thermal equilibrium


- Although LHC data strongly prefer that Higgs boson is a CP-even (scalar) particle, it is not yet excluded that Higgs boson has CP-odd (pseudoscalar) component ⇒ Sign of new physics
- Previous studies of the CP properties of Higgs boson interactions with gauge bosons $(H \rightarrow VV^{12}, H \rightarrow \gamma\gamma^3)$ have shown no deviation from the SM predictions.
- $\bullet~\mathcal{CP}\text{-}\mathsf{odd}$ Higgs bosons couple to fermions at tree-level \Rightarrow This way to go!

¹ JHEP03(2018)095

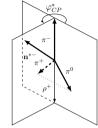
²Phys. Rev. D 100, 112002

Overview and Highlights of $H \rightarrow \tau \tau$ Decay \mathcal{CP} Run 2 Analysis

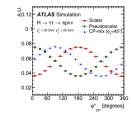
- Performing the first ATLAS measurement of Higgs ${\cal CP}$ nature in Yukawa coupling with $H\to\tau\tau$ decay vertex with ATLAS full Run-2 dataset 4
- CP-sensitive angular observable ϕ_{CP}^* is defined by the visible decay products of τ lepton decays, which requires reconstruction of τ decay products and decay modes.

⁴Eur. Phys. J. C 83, 563 (2023)

Tong PAN


9/18

• Effective Lagrangian for $\mathcal{CP}\text{-mixed}$ Higgs, parameterised with mixing angle ϕ_τ


$$\mathcal{L}_{h\tau\tau} = -\frac{m_{\tau}}{v} \kappa_{\tau} (\cos \phi_{\tau} \bar{\tau} \tau + \sin \phi_{\tau} \bar{\tau} i \gamma_5 \tau) h \tag{1}$$

- ϕ_{τ} : the " $\mathcal{CP}\text{-mixing"}$ angle $\in [-\frac{\pi}{2},\frac{\pi}{2}]$
 - $|\phi_{ au}| = 0$: Pure \mathcal{CP} -even, SM hypothesis
 - $|\phi_{\tau}| = \frac{\pi}{2}$: Pure *CP*-odd, Pseudo-scalar hypothesis
 - $0 < |\phi_{\tau}| < \frac{\pi}{2}$: \mathcal{CP} -admixture
- Observable ϕ^*_{CP} related to ϕ_{τ} constructed as signed angle between τ decay planes spanned by decay products (π^{\pm} , π^0 , light leptons) and / or impact parameter defined in the visible di-tau zero momentum frame (ZMF)

$$d\Gamma_{H\to\tau^+\tau^-} \approx 1 - b(E_+)b(E_-)\frac{\pi^2}{16}\cos(\phi_{CP}^* - 2\phi_{\tau})$$
(2)

 ϕ^*_{CP} distribution for 1p0n-1p1n decay in Higgs boson samples for different CP hypotheses

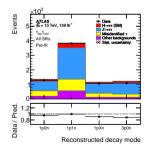
10/18

Observable Reconstruction and Decay Channels

Methods of constructing au decay planes and ϕ_{CP}^* ^a:

- IP method (for $\ell = e, \mu$ and 1p0n)
 - Charged tracks and impact parameter $(\mathbf{n}^{*\pm})$
- ρ decay plane method (1p1n, 1pXn)
 - Charged pion and neutral pion (π^0)
- a_1 decay method (3p0n)
 - An extension of ρ method^b

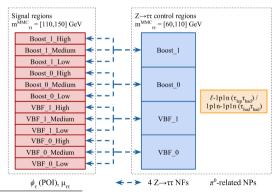
Combined


- Combination of the methods above according to different decay modes

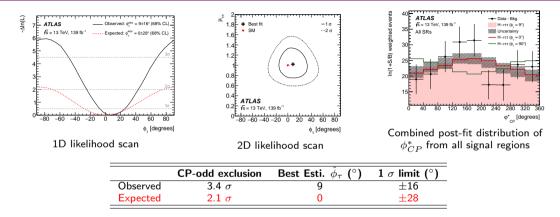
 τ decay product reconstruction and τ decay mode classification are implemented by **"Tau Particle Flow"** (from Run 1^c).

^aPhys. Rev. D 92, 096012 ^bPhys. Rev. D 94, 093001 ^cEur. Phys. J. C 76, 295 (2016)

Decay channel	Decay mode combination	Method	Fraction in all τ -lepton-pair decays
$\tau_{\rm lep}\tau_{\rm had}$	ℓ–1p0n	IP	8.1%
	ℓ -1p1n	$IP-\rho$	18.3%
	ℓ -1pXn	$IP-\rho$	7.6%
	ℓ–3p0n	$IP-a_1$	6.9%
$ au_{ m had} au_{ m had}$	1p0n-1p0n	IP	1.3%
	1p0n-1p1n	$IP-\rho$	6.0%
	1p1n-1p1n	ρ	6.7%
	1p0n-1pXn	$IP - \rho$	2.5%
	1p1n-1pXn	ρ	5.6%
	1p1n-3p0n	$\rho - a_1$	5.1%


di-au decay mode combinations considered in the analysis

Reconstructed τ_{had} decay modes


Event Selection

- Preselection criteria and trigger requirement (single lepton and di-tau trigger) for $\tau_{\text{lep}}\tau_{\text{had}}$ and $\tau_{\text{had}}\tau_{\text{had}}$ final states largely follow ATLAS Run-2 $H \rightarrow \tau \tau$ cross-section measurement⁵.
- 24 Signal Regions
- 8 $Z(\rightarrow \tau \tau)$ + jets Control Regions
- 2 ρ constraint $Z \rightarrow \tau \tau +$ jets Control Regions

5 JHEP08(2022)175

Main Fitting Results

- Best fit value of ϕ_{τ} is compatible with SM
- ullet Measured signal strength compatible with SM and ATLAS Run-2 $H \to \tau \tau$ cross-section measurement
- The total uncertainties are dominated by statistical uncertainty in data.
- The dominant contributions to the systematic uncertainties are from jet energy scale and resolution.

Tong PAN

• Full Run-2 dataset contains about 30 times more Higgs Bosons than its Run-1 counterpart, which is used for the measurements of Higgs boson production and decay rates.

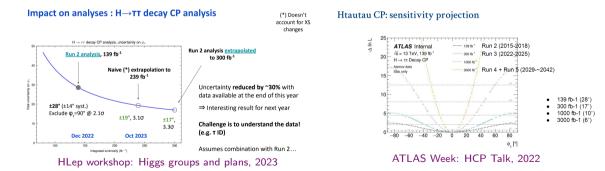
Cross-section measurement:

- The observed uncertainty in the inclusive cross-section determination achieved ±13.9% (+28/2%) for previous measurement).
- Cross-section measurements include 4 main Higgs production modes and in STXS 1.2 framework.
- All results are **consistent** with the Standard Model predictions.

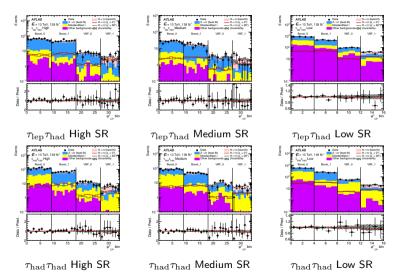
Higgs boson \mathcal{CP} property in $H \rightarrow \tau \tau$ decay channel:

- The mixing angle ϕ_{τ} is measured to be $9^{\circ} \pm 16^{\circ}$.
- $\bullet\,$ The pure $\mathcal{CP}\text{-}\mathsf{odd}$ hypothesis is disfavoured at a level of 3.4 $\sigma.$
- \bullet The \mathcal{CP} measurement for Run 2 is consistent with the Standard Model expectation.
- The measurement is statistically-limited.

Thank you for your attention!


Backup

Improvements:


- Statistical uncertainty (plan to combine Run 2 & partial Run 3)
- Experimentally limited by Jet energy scale effects (both in shape and acceptance)
- Potential improvement on the sensitivity in 3 prong (τ[±] → a₁[±]ν, a₁[±] → π[±]π⁺π⁻) channel based on observables trained by neural network (NN)
- Signal region categorization
- More decay mode combinations (1pXn-1pXn, 3p0n-3p0n, etc.)?
- Including $\tau_{lep}\tau_{lep}$ decay channel?

Improvements from Data Statistics

- Measurement uncertainty is largely dominated by data sample statistics
- 2022+2023 Run 3 (HLep GRL 56.3 = 29.0 + 27.2 fb⁻¹) + Run 2 (140 fb⁻¹): 28 deg \rightarrow 23 deg, uncertainty reduced by \sim 20%

Post-fit Distribution of Observable

