Measurements of the Higgs boson properties using *bb* and *cc* decays with the ATLAS detector

Martino Tanasini,

on behalf of the ATLAS Collaboration

Higgs2023 - 28/11/2023 - Beijing

$H{\rightarrow}bb$ and $H{\rightarrow}cc$

C: Observed direct and indirect couplings of the Higgs Boson with the other particles of the SM Predicted BRs for the SM 125 Gev Higgs Boson.

Properties

ATLAS-CONF-2023-067

epic/s10052-021-09192-8 JHEP03(2021)268

epic/s10052-020-08677-2 j.physletb.2021.136204 cds.cern.ch/record/2782535/ epic/s10052-022-10588-3

Resolved and Boosted Semileptonic WH/ZH, $H \rightarrow bb$

A run-2 13 TeV $Z(\nu\nu)H(bb)$ candidate event.

A Run-2 13 TeV W(ev)H(bb) candidate event.

A run-2 13 TeV Z(μμ)H(bb) candidate event.

Analyses targeting the $H \rightarrow bb$ decay, based on q three main channels targeting WH and ZH production, based on the W or Z decays both in the <u>resolved</u> and <u>boosted</u> regimes:

- \rightarrow 0 leptons (for Z $\rightarrow \nu\nu$)
- \rightarrow 1-lepton (W \rightarrow ev and W \rightarrow µv)
- \rightarrow 2-leptons (Z \rightarrow e^-e^+ and Z \rightarrow $\mu^-\mu^+)$

Resolved and Boosted Semileptonic WH/ZH, $H \rightarrow bb$

Main backgrounds \rightarrow V+jets (in particular b-jets) and top production.

Modelling \rightarrow simulation and auxiliary measurements. Controlled in the mass side-bands.

Measurement of VZ process with Z to *b* quarks to validate the strategy.

Resolved and Boosted Semileptonic WH/ZH, $H \rightarrow bb$

	Process	Signal Strength <i>µ</i>	Obs (Exp) Sig. σ	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
Resolved	(Z/W)H,Hbb	1.02 +0.18 -0.17	6.7 (6.7)	The 10 ² Combined
	ZH, Hbb	1.08 +0.25 -0.23	4.0 (4.1)	
	WH, Hbb	0.95 +0.27 -0.25	5.3 (5.1)	$\begin{bmatrix} 0 & 1 \\ V = W \end{bmatrix} = V = Z$
Boosted	(Z/W)H,Hbb	0.72 +0.39 -0.36	2.1 (2.7)	
Combined	(Z/W)H,Hbb	1.00 +0.18 -0.17	6.4 (6.3)	$\begin{bmatrix} 0 \\ 150 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\$
	ZH, Hbb	0.97 +0.25 -023	4.6 (5.0)	$V_{T} = 250 \frac{V_{T}}{GeV} = 400 \frac{V_{T}}{GeV} = 150 \frac{V_{T}}{GeV} = 250 \frac{V_{T}}{GeV} = 400 \frac{V_{T}}{GeV}$
	WH,Hbb	1.03 +0.28 -0.27	4.1 (3.9)	Combination for reduced STXS1.2

Precision on μ driven by Resolved Analysis.

 $\frac{\text{Combination}}{\text{cross-section}} \text{ for reduced STXS1.2} \\ \text{cross-section} \text{ measures in bins of } \\ p_{T}^{W/Z} \\ \frac{1}{2}$

Boosted All-Hadronic WH/ZH, H→bb

Jets

W/Z

NEW! (2023)

Higher hadronic W/Z branching fractions (~ x2 signal events) \rightarrow Extend reach to $p_T^{H} \sim 1$ TeV. Sensitivity to BSM affecting VH production.

Challenged by **dominant multijet** background → Enabled by improvement in multijet rejection (V-tagger and DNN-based **Hbb** tagger) and modelling (two data-driven estimations).

Boosted All-Hadronic WH/ZH, H→bb

Inclusive fit: $\mu = 1.4^{+1.0}_{-0.9} \rightarrow \text{obs.(exp.)} 1.7 (1.2) \sigma$. Cross Sec. = 3.3 +- 1.5 (stat)^{+1.9}_{-1.5}(syst) pb.

Uncertainty source	$\delta \mu$
Signal modeling	$^{+0.10}_{-0.02}$
MC statistical uncertainty	$^{+0.13}_{-0.13}$
Instrumental (pileup, luminosity)	$^{+0.012}_{-0.004}$
Large- R jet	$^{+0.13}_{-0.14}$
Top-quark modeling	$^{+0.14}_{-0.15}$
Other theory modeling	$^{+0.050}_{-0.031}$
$H \rightarrow b\bar{b}$ tagging	$^{+0.52}_{-0.23}$
Multijet estimate (TF uncertainty)	$^{+0.52}_{-0.41}$
Multijet modeling (TF vs. BDT)	$^{+0.14}_{-0.18}$
Total systematic uncertainty	$^{+0.80}_{-0.61}$
Signal statistical uncertainty	$+0.60 \\ -0.60$
Z+jets normalization	$^{+0.42}_{-0.20}$
Total statistical uncertainty	$^{+0.63}_{-0.63}$
Total uncertainty	$^{+1.02}_{-0.88}$

Systematic uncertainty dominated by multijet estimation and Hbb tagger calibration.

NEW! (2023)

$V_{\text{ector}}B_{\text{oson}}F_{\text{usion}} \text{ and } VBF\text{-photon } H {\rightarrow} bb$

EPJC 81 (2021)

Difficult trigger against multijet background.

t-channel \rightarrow forward jets. Hbb \rightarrow *b*-tagged jets.

Additional photon for topological advantages.

VBF and VBF-photon H→bb

VBF: Multijet from low NN score regions. Zbb from embedding (Zuu from data, substitute *u* with simulated b-quarks). **VBF-photon:** Fit of Signal on smoothly falling background.

H production in the combination.

VBF WH, H→bb

Same final state through either W-Higgs or Z-Higgs coupling \rightarrow Information on relative sign of the couplings through amplitudes interference!

Couplings parameterized through *k*-modifiers ($k_{particle}$ is 1 if coupling is SM) or their ratios λ .

Best ATLAS estimate from combination:

 λ_{wz} = 1.06 +- 0.06 \rightarrow Involves analyses not sensitive to relative W-Higgs/Z-Higgs sign.

VBF WH, H \rightarrow **bb:** if sign(λ_{WZ}) = -1, constructive interference, enhanced process rate, violation of the SM.

NEW! (2023)

Uses *H* to *b*-quarks and *W* to electron or muon.

NEW! (2023)

Event kinematics affected by $sign(\lambda_{wz})$. Two "cut-and-count" analyses:

 \rightarrow "Negative λ_{wz} ": aim to observe or exclude BSM scenarios with $\lambda_{wz} < 0$.

 \rightarrow "Positive λ_{WZ} ": Set the best possible limits on SM-like VBF WH production (two orthogonal *tight* and *loose* SRs)

Main backgrounds are tt and W+Jets \rightarrow Dedicated CRs.

VBF WH, H→bb

 $k_{\rm W}$, k_Z values with opposite sign are excluded with significance > 8 σ .

Higgs-boson couplings to W and Z bosons have the same sign.

"Positive λ_{wz} " analysis obs. (exp.) limit $\rightarrow \mu_{VBF WH, Hbb} < 11.2$ (9.4).

First limit on VBF, WH production.

top-Higgs CP in ttH and tH, $H \rightarrow bb$

ttH and tH \rightarrow Tree-level probe of top-Higgs Yukawa coupling.

$$\mathcal{L}_{t\bar{t}H} = -\kappa'_t y_t \phi \bar{\psi}_t (\cos \alpha + i\gamma_5 \sin \alpha) \psi_t$$

BSM models allow CP-odd component of top-Higgs. Pure CP-odd excluded by $H \rightarrow \gamma \gamma$, but **mixtures with** angle α still allowed.

tH production suppressed in SM due to interference with other diagrams \rightarrow Modified top-Higgs would enhance tH production.

<u>arXiv:2303.05974</u>

Very complex final state with at least 3 *b*-jets ($H \rightarrow bb$ and $t \rightarrow Wb$). 1 and 2-lepton regions, boosted and resolved *bb*-pairs.

Dominated by uncertainties on background modelling.

top-Higgs CP in ttH and tH, $H \rightarrow bb$

Simultaneous fit of the CP sensitive observables in the many regions of the analyses.

Expected yields from pure CP-odd and CP-even are overlaid.

 p_1 and p_2 are the 3-momenta of the top quarks, z is the beam axis.

NEW! (2023)

top-Higgs CP in ttH and tH, $H \rightarrow bb$

NEW! (2023)

16

 $\kappa'_t \cos \alpha$

Search for Semileptonic WH/ZH, $H \rightarrow cc$

Deep learning based dedicated c-tagger with 27% c-jet efficiency, 8.3% b-jet efficiency, and 1.7% light jet efficiency (on a ttbar sample).

Higgs couplings to 3^{rd} generation fermions (ttH, $H \rightarrow \tau \tau$, $H \rightarrow bb$) observed. Probing couplings to lighter 2^{nd} generation fermions could **open windows to new physics**.

$H \rightarrow cc$: one of the **most common** yet unobserved decay modes.

Search for Semileptonic WH/ZH, $H \rightarrow cc$

^{*}| k_c/k_b | obtained through a combination with the Semileptonic (W/Z)H, H→bb analysis (slide 4). The observation | k_c/k_b | < m_b/m_c (= 4.578+-0.008) **implies c-Higgs < b-Higgs Yukawa.**

Conclusion

 $H \rightarrow bb$ and $H \rightarrow cc$ decay channels are essential tools to probe various properties of the Higgs boson.

Combining with all the other decay modes \rightarrow a detailed map of the Higgs boson properties (> 10 years after the discovery!).

 $H \rightarrow bb$ and $H \rightarrow cc$ open windows on Higgs physics well beyond the *b*-Higgs and *c*-Higgs Yukawa couplings.

Backup

ttH, $H \rightarrow bb$ - ATLAS and CMS comparison

ATLAS \rightarrow Results compatible with SM predictions within 1-2 σ , but several negative fit values.

CMS \rightarrow Results compatible with SM ($\leq 2.4\sigma$), but fairly significant deficits, similar to ATLAS.

Search for Semileptonic (W/Z)H, $H \rightarrow cc$

Complex composition of backgrounds: V+jets and top quark \rightarrow backgrounds constrained in dedicated control regions.

Measurement of VZ process with Z to *c* quarks to validate the strategy.

(Z/W)H, (Z/W) $\rightarrow \nu\nu/l\nu/ll H \rightarrow bb$

