Property measurements of the Higgs boson production in association with top quark at the ATLAS detector

Ximo Poveda (IFIC, CSIC-UV), on behalf of the ATLAS Collaboration

Higgs 2023 IHEP Beijing, November 30, 2023

Introduction: Top quark Yukawa coupling

- Yukawa coupling of the Higgs boson and fermions (λ_f): proportional to fermion mass
 - $\circ~$ Top quark is heaviest fermion in the SM \rightarrow Largest Yukawa coupling: $\lambda_t \approx$ 1
 - Only coupling that cannot be observed in Higgs decays
- Contributes to gluon-gluon fusion (ggF) and H → γγ decays → Could be used to determine λ_t but under model assumptions

Single top+Higgs production:

- Lower cross-section: 0.09 pb at $\sqrt{s} = 13$ TeV in the SM (mainly *tHqb* production)
- Interference between top and *W* couplings → Sensitive to the sign of λ_t and BSM effects

Measuring $t\bar{t}H$ production

 Combination of top quark and H decays → Complex final states, with many objects: jets, b-jets, light leptons (ℓ), hadronic taus (τ_{had}), photons

- Top quark Yukawa coupling measured in different analyses in ATLAS and established with $>5\sigma$ significance in PLB 784 (2018) 173
- Results of the measured couplings are usually expressed in terms of signal strength $\mu = \sigma/\sigma_{\rm SM}$ or coupling modifier κ_t
- $t\bar{t}H$ also part of the Simplified Template Cross-Section (STXS) framework: 5 bins in Higgs boson p_{T}

Couplings/STXS: $t\bar{t}H(b\bar{b})$

- Large signal branching ratio but also large background from tt+b-jet production (~15 pb)
- Events categorized by tt decay (1/2ℓ) and p^H_T, including 1ℓ boosted categories for p^H_T > 300 GeV
- Signal and control regions built using number of jets and various b-tagging requirements
- MVAs used for event reconstruction and classification
- Dedicated uncertainty covering pre-fit mismodelling for p^{b\bar{b}}_T distribution

JHEP 06 (2022) 97

Couplings/STXS: $t\bar{t}H(b\bar{b})$

- Inclusive results: μ_{ttH} = 0.35^{+0.36}_{-0.34}, 1.0σ observed significance (2.7σ expected)
- Measured μ for five separate p_{T}^{H} STXS bins

- Sensitivity dominated by uncertainties on *tt*+≥1b background modeling (despite significant improvement relative to previous measurements)
- Most relevant uncertainties: *t̄t* NLO matching (MadGraph5 vs. Powheg), *t̄t*+≥1*b* fractions (Powheg+Herwig7/Pythia8) and FSR variations

Couplings/STXS: $t\bar{t}H$, tH with $H \rightarrow \gamma\gamma$ JHEP 07 (2023) 088

- Relatively low signal yields but clear signal peak and low background level
- Multiclass BDT to separate signal events in 45 different STXS analysis regions → Different categories for tt
 *t*H, tHqb and tHW
 - BDT inputs: photon kinematics, *E*_T^{miss}, number of jets, *b*-jets, reconstructed top quarks, etc.
- Each class is further divided into multiple categories using a binary MVA classifier
- $t\bar{t}H$ and tHW: binary BDT classifier separating signal and the continuum $\gamma\gamma$ background
- *tHqb*: two sub-classes with a neural-network (NN) binary classifier separating $\kappa_t = 1$ vs. $\kappa_t = -1$, then NN separating *tHqb* from continuum background and other Higgs production modes.

Couplings/STXS: $t\bar{t}H$, tH with $H \rightarrow \gamma\gamma$ JHEP 07 (2023) 088

- Results: $\mu_{t\bar{t}H} = 0.89^{+0.32}_{-0.30}$ and $\mu_{tH} = 2^{+4}_{-3}$ (both statistically dominated)
- Measured five STXS tt H bins as a function of p^H_T
- Probing κ_t with two different models:
 - **Resolved:** using κ_t in the ggF and $H \rightarrow \gamma \gamma$ loops
 - Effective: effective coupling (κ_g and κ_γ) fixed to the SM prediction \rightarrow Sensitivity to the sign of κ_t mostly from *tH* production
- Effective approach: excluding negative κ_t values by ≥2.2σ and values outside the 0.65 < κ_t < 1.25 range (expected: 0.71 < κ_t < 1.29) at 95% CL

Ximo Poveda (IFIC, CSIC-UV)

Couplings/STXS: $t\bar{t}H(WW^*, \tau\tau, ZZ^*)$ multi-lepton

- Combination of relative large signal yields and low (despite challenging) background
- Targeting H → WW^{*}, ττ, ZZ^{*} decays, with leptonic tt
- Main background: tt → ℓ[±]ℓ[±] or >3ℓ+ b-jets

- Results (80 fb⁻¹): μ_{tīH} = 0.58^{+0.36}_{-0.33}
- Normalization for $t\bar{t}W$ a factor 1.3-1.7 above the theoretical predictions available at the time
- Recent tt
 W cross-section measurement (ATLAS-CONF-2023-019, full Run 2 data) confirmed tensions even with updated theoretical predictions (now incorporating higher order QCD and EWK corrections)

Couplings/STXS: $t\bar{t}H(\tau\tau, ZZ^*)$ resonant EPJC 80 (2020) 957, JHEP 08 (2022) 175

- *ttH* production also explored in leptonic resonant Higgs decays using full Run 2 dataset
- Very good separation from other production modes achieved with jet and *b*-jets requirements, although low signal yields expected
- *ttH*(τ_{had}τ_{had}) with fully hadronic tau-lepton and top quark decays:
 - $\circ~$ Two BDTs employed to separate signal from $Z \rightarrow \tau \tau$ and top backgrounds
 - Results: μ_{ttH} = 1.06^{+1.07}_{-0.94}(stat)^{+0.70}_{-0.53}(syst)
- $t\bar{t}H(ZZ^* \rightarrow 4\ell)$ targeting hadronic and leptonic top quark decays:
 - Neural network to separate $t\bar{t}H$ from t+XX processes in the hadronic channel
 - Results: $\mu_{t\bar{t}H} = 1.7^{+1.7}_{-1.2}(\text{stat})^{+0.3}_{-0.2}(\text{syst})$

Ximo Poveda (IFIC, CSIC-UV)

Ximo Poveda (IFIC, CSIC-UV)

Couplings/STXS: $t\bar{t}H$ combination

- Detailed tt H and tH combination for the 10th anniversary of the discovery
- Split of tt
 t H measurements for different decay modes (γγ, ZZ*, WW*, ττ, bb
 b b
- Including ttH multilepton results from PRD 97 (2018) 072003 (36 fb⁻¹)

Higgs 2023

- Combined measurements for six STXS p_T^H bins
- Low p_{T}^{H} limited by statistics $(H \rightarrow \gamma \gamma)$ and higher p_{T}^{H} more affected by systematics
- Very good agreement with the SM predictions

November 30, 2023 10

CP properties of top-Higgs interactions

- In the SM, the Higgs boson is *CP*-even ($J^{CP} = 0^{++}$, scalar)
- Signs of a *CP*-odd ($J^{CP} = 0^{+-}$, pseudoscalar) couplings to SM particles (or an *CP*-odd/even admixture) would be a indication of BSM physics
 - Motivation: New sources of *CP* violation needed to explain baryon asymmetry in the university (besides the CKM matrix)
- Effective Lagrangian describing the top quark Yukawa coupling can be parametrized as:

$$\mathcal{L} = -\frac{m_t}{\nu} \left\{ \bar{\psi}_t \kappa_t \left[\cos(\alpha) + i \sin(\alpha) \gamma_5 \right] \psi_t \right\} H$$

- κ_t : coupling modifier parameter (SM: $\kappa_t = 1$)
 - $\circ~$ Values of $\kappa_{t} \neq$ 1 would induce changes in the total cross-section
- α : *CP* mixing angle (SM: $\alpha = 0$; pure *CP*-odd: $\alpha = 90^{\circ}$)
 - $\circ~$ Values of $\alpha \neq$ 0 would imply an admixture with pseudoscalar coupling $\rightarrow~$ Changes in cross-section and kinematics
- Dedicated analyses exploring the *CP* properties of the top-Higgs interaction exploiting $H \rightarrow b\bar{b}$ and $H \rightarrow \gamma\gamma$ decays

CP properties: $t\bar{t}H/tH$, $H \rightarrow b\bar{b}$

arXiv:2303.05974

- Similar strategy as couplings/STXS analysis but now also considering tH signal
- Dedicated CP-sensitive variables built with angular distance between top quarks or lepton candidates:
 - *b*₂: enhanced for top quarks in opposite $b_2 = \frac{(\vec{p}_1 \times \hat{z}) \cdot (\vec{p}_2 \times \hat{z})}{(\vec{p}_1 \times \hat{z})}$ 0 directions and closer to the beam pipe
 - b_4 : narrower azimuthal separation of top 0 quarks for CP-odd case

 $\|\vec{p}_1\|\|\vec{p}_2\|$ $b_4 = \frac{(\vec{p}_1 \cdot \hat{z})(\vec{p}_2 \cdot \hat{z})}{2}$

CP properties: $t\bar{t}H/tH$, $H \rightarrow b\bar{b}$

- Most relevant systematic uncertainties:
 - $t\bar{t}$ +≥1*b* 4 flavour scheme (massive *b*-quarks, only from $g \rightarrow b\bar{b}$) vs. 5 flavour scheme (massless *b*-quarks, in the PDF)
 - NLO matching (PowhegBox vs. MadGraph5_aMC@NLO)
 - Relative fractions of $t\bar{t}+1b$ and $t\bar{t}+\geq 2b$
- Best-fit value:

$$lpha = 11^{+56}_{-77} \, ext{degrees} \ \kappa_t = 0.84^{+0.30}_{-0.46}$$

- In agreement with the SM expectations of κ_t = 1 and α = 0
- *CP*-odd hypothesis ($\alpha = 90^{\circ}$) excluded at 1.2 σ significance

arXiv:2303.05974

CP properties: $t\bar{t}H/tH$, $H \rightarrow \gamma\gamma$

PRL 125 (2020) 061802

- Two separate channels (0/≥1 leptons)
- Categories defined using two BDTs:
 - Background rejection: $t\bar{t}H$ vs. main backgrounds $(\gamma\gamma+\text{jets}, t\bar{t}\gamma\gamma)$
 - *CP* BDT: separate *CP*-odd and *CP*-even couplings in the signal
- 12 categories for hadronic top decays and 8 for leptonically top decays

CP properties: $t\bar{t}H/tH$, $H \rightarrow \gamma\gamma$

PRL 125 (2020) 061802

- Simultaneous fit to $m_{\gamma\gamma}$ in all categories
 - Higgs couplings to photons and gluons constrained by the Run 2 combination results in PRD 101 (2020) 012002 (up to 80 fb⁻¹)
 - Dominated by statistical uncertainties
- Results strongly favouring the CP-even hypothesis:
 - Exclusion of $|\alpha| > 43^{\circ}$ at 95% CL
 - \circ Pure *CP*-odd coupling excluded at 3.9 σ

Summary

- More than 11 years after the discovery of the Higgs boson,
- ... and 5 since the top quark Yukawa coupling was observed
- Going beyond single coupling measurement \rightarrow Exploiting STXS approach with measurements of $t\bar{t}H$ as a function of the Higgs boson p_{T}
- Several analyses exploring CP violation in Higgs-top interactions
- Some of these measurements limited by statistics, others by background understanding (*t̄tW*, *t̄tb̄b*; see talk by Tomáš Ježo on Monday) → Stay tuned
- Still a factor 10 more data to be acquired at the LHC!

Acknowledgments

- The author's work is supported by:
 - Ramón y Cajal grant RYC2018-025791-I funded by MCIN/AEI/ 10.13039/501100011033 and by "ESF Investing in your future"
 - Grants PID2021-124912NB-I00 and PID2021-125069OB-100 funded by MCIN/AEI/ 10.13039/501100011033 and by "ERDF A way of making Europe"
 - Project CIAICO/2021/154 funded by Generalitat Valenciana
 - Project ASFAE/2022/010 funded by MCIN, by the European Union NextGenerationEU (PRTR-C17.I01) and Generalitat Valenciana

Backup Slides

BACKUP: $t\bar{t}H(b\bar{b}) p_{T}^{H}$ modelling

 Reweighting pre-fit p^H_T distribution to match data used as correlated uncertainty between channels → 1σ pull in the fit corresponds to correcting the distribution

