MEASUREMENT OF THE HIGGS COUPLING TO TOP QUARKS WITH FOUR-TOP-QUARK PRODUCTION

HIGGS 2023 - BEIJING **30 NOVEMBER 2023 RYAN ROBERTS FOR THE ATLAS COLLABORATION**

Eur. Phys. J. C 83 (2023) 496 **Auxiliary Material**

TOP YUKAWA COUPLING

- The top Yukawa is a direct probe of mass generation from EWSB and relevant to the hierarchy of the SM.
- Top is the heaviest SM fermion with mass near the EW scale; top Yukawa coupling is order 1.
- Modified by many BSM extensions to Higgs sector.
- Possible source of CP violation.
- Key contributor to loop induced gluon fusion single and di-Higgs production, diphoton Higgs decay.
- Central part of Higgs physics!

$$\mathscr{L} = -\frac{1}{\sqrt{2}} y_t \kappa_t \bar{t} \left(\cos \alpha + i \gamma_5 \sin \alpha \right) th$$
Potential BSM top-Higgs couplings
parameterized by the coupling strength κ

m_H=125.7 GeV

FIG. 1. Renormalization group running of the Higgs coupling constant λ for the Higgs mass $M_h = 125.7$ GeV and several values of the top quark Yukawa $y_t(\mu = 173.2 \,\text{GeV})$.

J.Exp.Theor.Phys. 120 (2015) 3, 335-343

MEASURING THE TOP YUKAWA WITH 4 TOPS

- Rare process with QCD and **EW** contributions, including off-shell Higgs mediator.
- Cross section flat for small values of κ_t with a steep rise above 1.5.

Quartic and quadratic terms in *K*_t.

edictions	$\sigma_{t\bar{t}t\bar{t}}$ [fb]
<u>JHEP 02 (2018) 031</u>	$7.6^{+4.9}_{-2.7}$
<u>JHEP 02 (2018) 031</u>	$12.0^{+2.2}_{-2.5}$
<u>Phys. Rev. Lett. 131,</u> <u>211901</u>	$13.4^{+1.0}_{-1.8}$

Dependence of the $t\bar{t}t\bar{t}$ cross-section on the top Yukawa coupling.

COMPARISON WITH OTHER APPROACHES Four Tops

- Most sensitive at high κ_t .
- Potentially affected by BSM mediators.
- Off-Shell: Independent of Higgs width.
- $\sigma \times BR = 1.5 \text{ fb*} (JHEP 02 (2018) 031).$
- Template based signal and background modeling.
- Dominant uncertainties: stat, *ttt* modeling, $t\bar{t}W$ modelling, b-tagging.

Measurements in different channels face different challenges and make different assumptions. Multiple complementary measurements give us a more complete picture.

* NLO cross-section. BR is same sign lepton + $\geq 3\ell$ channels after τ decays.

[†] NLO fiducial cross-section. $H \rightarrow \gamma \gamma$ BR with no top decays.

$$\mathsf{ttH}(H\to\gamma\gamma)$$

- Most sensitive at low κ_t .
- Other Higgs couplings, possible BSM, enter through decay.
- On-Shell: Positively identify the Higgs by its mass.
- $\sigma \times BR = 1.1 \text{ fb}^{\dagger}$ (JHEP 07 (2023) 088).
- Analytic signal and background modeling.
- Dominant uncertainties: stat, $t\bar{t}H$ modeling, jet systematics, photon systematics.

SIGNAL REGION SELECTION

- Targeting the same sign dilepton (2LSS) and three lepton (3L) final states 12% BR.
 - Most sensitive channel due to background rejection power of same sign leptons.
- Trigger on single lepton with $p_T > 28$ GeV, require same sign leptons, each with $p_T > 15$ GeV.
- **Z veto** on opposite sign muon pairs, all electron pairs.
- ▶ Looking for high multiplicity, high mass final state: \geq 6 jets, \geq 2 b-jets, $H_T > 500$ GeV.
- Overall selection efficiency for 2LSS/3L $t\bar{t}t\bar{t}$ events is 18%.
- Also define 8 control regions to constrain background model.

RYAN ROBERTS - HIGGS 2023

Signal Region Composition

tīΖ QmisID Mat. Conv. Low m ΗFμ ttH ttW tτZ

SIGNAL/BACKGROUND SEPARATION

A Graph Neural Network (GNN)

is trained to separate *tītī* from backgrounds in the signal region.

- Each event becomes a fully connected graph with jets, leptons, and missing transverse energy as nodes.
- Message passing architecture allows network to learn complex features of the four top process.

BACKGROUNDS WITH FAKE AND NON-PROMPT LEPTONS

- Fake leptons, material conversion, leptons from heavy flavor decays, or charge misidentification allow $t\bar{t}$ to enter 2LSS channel.
- Charge misidentification extrapolated from data in opposite sign region.
- Non-prompt leptons from heavy flavor decays and photon conversions use templates from MC with floating normalizations constrained by control regions.

ttWBACKGROUND

- \bullet $t\bar{t}W$ modeling seen to be problematic in e.g. JHEP 07 (2023) 219 ($t\bar{t}W$), ATLAS-CONF-2019-045 ($t\bar{t}H$).
- Semi data-driven approach with templates for each jet multiplicity and sign of the W^{\pm} .
- Jet multiplicity distributions $N_+(j)$ fit to analytic distribution in control regions.
- > 2 scaling parameters, (a_0, a_1) , and 2 normalizations, $(N_+(4), N_-(4))$ constrained in 4 $t\bar{t}W$ control regions.

$$R(j) = \frac{N_{\pm}(j+1)}{N_{\pm}(j)} = a_0 + \frac{a_1}{1+(j-4)}$$

•
$$\sigma_{t\bar{t}t\bar{t}} = 22.7^{+4.7}_{-4.3}(\text{stat}) + 4.6_{-3.4}(\text{syst}) \text{ fb} = 22.5 + 6.6_{-5.5} \text{ fb}$$

YUKAWA MEASUREMENT - TECHNIQUE

- Simulated signal points at 6 values of the top Yukawa coupling. Dominant effect is cross-section variation.
- In each bin, parameterize signal yield as a function of κ_t and α .
- > 2 possible treatments of $t\bar{t}H$ background.
 - Fully parameterize in terms of κ_t , α .
 - Floating normalization for $t\bar{t}H$.

YUKAWA MEASUREMENT - RESULTS

Mild excess in signal-like events over SM results in weaker than expected limits on κ_t .

RYAN ROBERTS - HIGGS 2023

 $t\bar{t}H$ Parameterized: $|\kappa_t| < 1.8 (1.6)$ Obs. (Exp.)

*ttH***not**

Parameterized:

 $|\kappa_t| < 2.2 \ (1.8)$

Obs. (Exp.)

OUTLOOK

- tttt provides a very different window into the top-Higgs interaction compared to $t\bar{t}H$ measurements or measurements of κ_g and κ_{γ} .
- The cross-section measurement has prospects for improvement in future runs from increased statistics and from improved modeling of $t\bar{t}t\bar{t}$, $t\bar{t}t$, and $t\bar{t}W$.
- The top Yukawa determination can also benefit from simultaneously targeting $t\bar{t}t\bar{t}$ and $t\bar{t}H$.

and $t\bar{t}H$ in ATLAS.

THANKS!

BACKUP

14

FULL SELECTION DETAILS

	Degion	Channel	N.	N.	Other	F
	Region	Channel	l ^{Iv} j	Nb	selection	va
	CDL	00		× 1	ℓ_1 or ℓ_2 is from virtual photon (γ^*) decay	
	CR LOW m_{γ^*}	55, ee or $e\mu$	$4 \le N_j < 6$	≥ 1	ℓ_1 and ℓ_2 are not from photon conversion	co
	CR Mat. Conv.	SS, ee or $e\mu$	$4 \le N_{\rm i} < 6$	≥ 1	ℓ_1 or ℓ_2 is from photon conversion	co
					$100 < H_{\rm T} < 300 {\rm GeV}$	
	CD LIE			1	$E_{\rm T}^{\rm miss} > 50 {\rm ~GeV}$	
	CK HF μ	$e\mu\mu$ or $\mu\mu\mu$		= 1	total charge = ± 1	
					$100 < H_{\rm T} < 275 {\rm ~GeV}$	
	CD HE a			_ 1	$E_{\rm T}^{\rm miss} > 35 {\rm ~GeV}$	
	СК ПГ С	$eee or ee\mu$		= 1	total charge = ± 1	
					$ \eta(e) < 1.5$	
					when $N_b = 2$: $H_T < 500$ GeV or $N_i < 6$	
	CR $t\bar{t}W^+$ +jets	SS, $e\mu$ or $\mu\mu$	≥ 4	≥ 2	when $N_b \ge 3$: $H_T < 500 \text{ GeV}$	
					total charge > 0	
					$ \eta(e) < 1.5$	
					when $N_b = 2$: $H_T < 500$ GeV or $N_j < 6$	
	CR $t\bar{t}W^-$ +jets	SS, $e\mu$ or $\mu\mu$	≥ 4	≥ 2	when $N_b \ge 3$: $H_T < 500 \text{ GeV}$	
					total charge < 0	
					ℓ_1 and ℓ_2 are not from photon conversion	
	CR 1b(+)	2LSS+3L	≥ 4	= 1	$H_{\rm T} > 500 { m GeV}$	
					total charge > 0	
					ℓ_1 and ℓ_2 are not from photon conversion	
	CR 1b(-)	2LSS+3L	≥ 4	= 1	$H_{\rm T} > 500 { m GeV}$	
:					total charge < 0	
2022	SR	2LSS+3L	≥ 6	≥ 2	$H_{\rm T} > 500 { m ~GeV}$	GN

RYAN ROBERTS - HIGGS 2023

15

MONTE CARLO SIMULATION DETAILS

Process	Generator	ME order	PDF	Parton shower	Tune
tīttī	MadGraph5_aMC@NLO	NLO	NNPDF3.1nlo	Ρυτηία8	A14
	(MadGraph5_aMC@NLO)	(NLO)	(MMHT2014 LO)	(Herwig7)	(H7UE)
	(Sherpa 2.2.11)	(NLO)	(NNPDF3.0nnlo)	(Sherpa)	(Sherpa)
	(MadGraph5)	(LO)	(MMHT2014 LO)	(Pythia8)	(A14)
$t\bar{t}t\bar{t}$ κ_t	MadGraph5	LO	MMHT2014 LO	Ρυτηία8	A14
$t\bar{t}t\bar{t}$ EFT	MadGraph5	LO	MMHT2014 LO	Ρυτηία8	A14
tīt	MadGraph5	LO	NNPDF2.3LO	Ρυτηία8	A14
$t\bar{t}W$	Sherpa 2.2.10	MEPS@NLO	NNPDF3.0nnlo	Sherpa	Sherpa
	(MadGraph5_aMC@NLO)	(FxFx)	(NNPDF2.3lo)	(Pythia8)	(A14)
$t\bar{t}W$ EW	Sherpa 2.2.10	LO	NNPDF3.0nnlo	Sherpa	Sherpa
	(MadGraph5)	(LO)	(NNPDF2.3lo)	(Pythia8)	(A14)
$t\bar{t}Z/\gamma^*$	MadGraph5_aMC@NLO	NLO	NNPDF3.0nlo	Ρυτηία8	A14
	(Sherpa 2.2.11)	(MEPS@NLO)	(NNPDF3.0nnlo)	(Sherpa)	(Sherpa)
tīH	PowhegBox	NLO	NNPDF3.0nlo	Ρυτηία8	A14
	(PowhegBox)	(NLO)	(NNPDF3.0nlo)	(Herwig7)	(H7UE)
	(MadGraph5_aMC@NLO)	(NLO)	(NNPDF3.0nlo)	(Pythia8)	(A14)
tī	PowhegBox	NLO	NNPDF3.0nlo	Ρυτηία8	A14
Single-top	PowhegBox	NLO	NNPDF3.0nlo	Ρυτηία8	A14
tWZ	MadGraph5_aMC@NLO	NLO	NNPDF3.0nlo	Ρυτηία8	A14
tZq	MadGraph5	LO	NNPDF2.3LO	Ρυτηία8	A14
$t\bar{t}VV$	MadGraph5	LO	NNPDF2.3LO	Ρυτηία8	A14
V	Sherpa 2.2.1	MEPS@NLO	NNPDF3.0nnlo	Sherpa	Sherpa
VV,VVV	Sherpa 2.2.2	MEPS@NLO	NNPDF3.0nnlo	Sherpa	Sherpa
VH	Ρυτηία8	LO	NNPDF2.3LO	Ρυτηία8	A14

16

SYSTEMATICS

RYAN ROBERTS - HIGGS 2023

Total u

Uncert Signal

 $t\bar{t}t\bar{t}$ cro

 $t\bar{t}t\bar{t}$ gen

 $t\bar{t}t\bar{t}$ par

Other

Backg $t\bar{t}H+j\epsilon$

 $t\bar{t}W+je$

 $t\bar{t}Z+je$

Non-pr

Charge

Instru

Jet flav

Jet flav

Jet flav

Simula

Other

Lumino

Total s

Statist

Intrins

Non-pr

tainty source	Δ
l modelling	
oss-section	+0.53
nerator choice	+0.33
rton showering	+0.14
$t\bar{t}t\bar{t}$ modelling	+0.07
ground modelling	
ets modelling	+0.08
ets modelling	+0.08
ets modelling	+0.05
background modelling	+0.04
rompt leptons modelling	+0.04
delling	+0.02
e misassignment	+0.01
ımental	
vour tagging $(b-jets)$	+0.10
certainties	+0.09
vour tagging (light-flavour jets)	+0.08
vour tagging $(c\text{-jets})$	+0.04
ation sample size	+0.04
experimental uncertainties	+0.04
osity	+0.02
systematic uncertainty	+0.65
tical	
sic statistical uncertainty	+0.35
ets normalisation and scaling factors	+0.12
rompt leptons normalisation (HF, Mat. Conv., Low m_{γ^*})	+0.04
statistical uncertainty	+0.39
uncertainty	+0.76

FULL BACKGROUND COMPOSITION AND YIELDS

	Pr	e-fit	Po	ost-fit
	SR	GNN≥0.6	SR	GNN
tŦW	130 ± 40	9 ± 4	127 ± 35	12 :
$t\bar{t}Z$	72 ± 15	3.4 ± 1.8	79 ± 15	4.4 ±
tīH	65 ± 11	4.6 ± 1.3	68 ± 10	5.0 ±
QmisID	27 ± 4	1.78 ± 0.26	27 ± 4	1.80 ±
Mat. Conv.	16.5 ± 2.3	0.73 ± 0.25	30 ± 8	1.4 ±
HF e	3.1 ± 1.0	0.4 ± 0.5	2.3 ± 2.4	0.3 ±
HF μ	7.1 ± 1.2	0.31 ± 0.15	9 ± 4	0.41 ±
Low m_{γ^*}	14.1 ± 2.0	0.52 ± 0.19	15 ± 5	0.56 ±
Others	47 ± 11	3.9 ± 1.2	50 ± 10	4.3 ±
tīt	2.9 ± 0.9	1.5 ± 0.5	2.9 ± 0.9	1.5 ±
Total bkg	390 ± 50	26 ± 5	412 ± 21	32 :
tīttī	38 ± 4	25.2 ± 3.2	69 ± 15	45 ±
Total	430 ± 50	51 ± 7	480 ± 19	77 :
Data	482	83	482	8

BDT CROSSCHECK

- Cross-check fit performed with Boosted Decision Tree akin to that used in [cite evidence].
- 6.0σ (3.9σ) observed expected significance
 of *tītī* signal.

2D FIT WITH $t\bar{t}H$ **NOT PARAMETERIZED**

NORMALIZATION FACTORS

Fake/non-prompt background		NF _{Mat. Conv.}		$NF_{Low \ m_{\gamma^*}}$	NF _{HF} e		$\rm NF_{\rm HF}\mu$
Value		$1.80^{+0.47}_{-0.41}$		$1.08^{+0.37}_{-0.31}$	$0.66^{+0.75}_{-0.46}$		$1.27^{+0.53}_{-0.46}$
<i>ttW</i> background	<i>a</i> ₀		a_1	$NF_{t\bar{t}W}$	+(4jet)	NF	$F_{t\bar{t}W^-(4jet)}$
Value	0.51 ± 0.51	.10	$0.22^{+0.2}_{-0.2}$	$\frac{5}{2}$ 1.27	+0.25 -0.22	1	$.11^{+0.31}_{-0.28}$

Fake/non-prompt background		NF _{Mat. Conv.}		$NF_{Low \ m_{\gamma^*}}$	NF _{HF} e		$\rm NF_{\rm HF}$ $_{\mu}$
Value		$1.80^{+0.47}_{-0.41}$		$1.08^{+0.37}_{-0.31}$	$0.66^{+0.75}_{-0.46}$		$1.27^{+0.53}_{-0.46}$
<i>ttW</i> background	<i>a</i> ₀		a_1	$NF_{t\bar{t}W}$	+(4jet)	NF	$F_{t\bar{t}}W^{-}(4\text{jet})$
Value	0.51 ± 0	.10	$0.22^{+0.2}_{-0.2}$	1.27^{+}_{-2}	-0.25 -0.22	1	$.11^{+0.31}_{-0.28}$

