

Higgs 2023, 28/11/2023, Beijing, China

Charming Yukawa Coupling of the Higgs Boson

Zhuoran Feng (Nikhef) On behalf of the ATLAS collaboration

Introduction

- Precise measurements of the Higgs Yukawa couplings to fermions are important → help understanding the mass hierarchy of fermions
- Not yet observed Higgs coupling to 1st and 2nd generation quarks can be a probe of new physics
- Higgs to charm decay $(H \rightarrow c\bar{c})$ is a promising approach
 - SM $H \rightarrow c\bar{c}$ is the most common Higgs decay mode that is not observed yet
 - Small Higgs-charm Yukawa coupling: sensitive to new physics modifications
- Focus of today:
 - The ATLAS search for $H \rightarrow c\bar{c}$ with full Run 2 data [Eur. Phys. J. C 82 (2022) 717]
 - Possible improvements with state-of-the-art techniques developed by ATLAS

Standard Model Higgs branching ratios

SATLAS

- Production and decay modes: VH production, $Z(\nu\nu)H(0L)$, $W(l\nu)H(1L)$, Z(ll)H(2L) suppress QCD backgrounds
- Categorisation: In each lepton channel and p^V_T bin, number of c-tags (1 or 2) and number of jets (2 or 3+) divide events into 4 categories → In total 16 signal regions
- Main backgrounds: $V + jets, t\bar{t}$
- Cut-based analysis: invariant mass of the two leading jets (m_{cc}) as the discriminant
- Simultaneous binned likelihood fit to signal strength of $VH(\rightarrow c\bar{c})$, $VZ(\rightarrow c\bar{c})$ and $VW(\rightarrow cq)$

Flavour tagging

- While identifying c-jets, it makes the tagging scheme orthogonal to $VH(\rightarrow b\bar{b})$ analysis for combination with $VH(\rightarrow b\bar{b})$
- Designs: for each jet, c-tagging + b-veto
 - ATLAS DL1c tagger from Run2
 - b-veto using the b-tagging working point from $VH(\rightarrow b\bar{b})$ analysis
 - Dedicated optimisation for the analysis

	b-jets	c-jets	light-jets	tau-jets
c-tagging (w/ b-veto)	8%	27%	1.6%	25%

• Event selection: at least 1 or 2 c-tags for signal region events

Flavour tagging scheme used in the VH(cc) analysis

Calibrated tagging efficiency over different jet pT

Results

Mass distributions with all backgrounds subtracted

Good data/simulation agreement VZ(cc) significance: 2.6σ (2.2σ expected) VW(cq) significance: 3.8σ (4.6σ expected)

Best fit VH(cc) signal strength

Best fit: $\mu_{VH(\rightarrow c\bar{c})} = -9 \pm 15$ Similar size of statistical and systematic uncertainties

Observed $VH(\rightarrow c\bar{c})$ limit: $26 \times SM$ ($31 \times SM$ expected)

• First ATLAS measurements of $VZ(\rightarrow c\bar{c})$ and $VW(\rightarrow cq)$ using c-tagging

• Up-to-date ATLAS $VH(\rightarrow c\bar{c})$ results

ATLAS

5

Yukawa coupling strength: κ_c interpretation

- Measured VH(cc) signal strength can be parameterised in terms of coupling modifiers (κ_i)
- Considering modifications to decay only, setting all other coupling modifiers to 1, assuming SM Higgs width:
- 95% CL limit on κ_c : [-8.5, 8.5] (expected [-12.3, 12.4])
- First direct limit on $\kappa_c!$

Combination with $VH(\rightarrow b\bar{b})$

Combined $VH(\rightarrow b\bar{b})$ and $VH(\rightarrow c\bar{c})$ likelihood scan results of κ_c/κ_b . κ_b is a free parameter here.

- Designs: Combined likelihood function as the product of individual likelihood functions of $VH(\rightarrow b\bar{b})$ [Eur. Phys. J. C 81 (2021) 178] and $VH(\rightarrow c\bar{c})$
- Fitted signal strengths are in good agreement with individual analyses:
 - $\mu_{VH(\rightarrow c\bar{c})} = -9 \pm 10$ (stat.) ± 11 (syst.) (-9 ± 15 from individual VH($\rightarrow c\bar{c}$))
 - $\mu_{VH(\rightarrow b\bar{b})} = 1.06 \pm 0.12 \text{ (stat.)} {}^{+0.15}_{-0.13} \text{ (syst.)} (1.02 {}^{+0.18}_{-0.17} \text{ from individual } VH(\rightarrow b\bar{b}))$
- κ_b and κ_c interpretation:
 - All other couplings and Higgs decays are set to SM prediction
 - 95% CL constraints on $|\kappa_c/\kappa_b| < 4.5$ (5.1 expected) smaller than ratio between band c-quark masses
- \rightarrow Coupling of the Higgs boson to charm quark is weaker than to bottom quark

To improve constraints on κ_c — combined with indirect searches

95% CL constraints on Yukawa coupling modifiers

	Observed	Expected
κ _b	[-1.09, 0.86] U [0.81, 1.09]	[-1.14, -0.92] U [0.86, 1.15]
ĸc	[-2.27, 2.27]	[-2.77, 2.75]

From combining $H \to ZZ^* \to 4l$ and $H \to \gamma\gamma$ measurements of total and differential Higgs production cross-sections. Both p_T^H shape and normalisation modifications are considered. Results for one modifier are obtained while fixing the other one to SM expectations.

- Indirect Yukawa coupling constraints: $H \rightarrow ZZ^* \rightarrow 4l$ and $H \rightarrow \gamma\gamma$ measurements \rightarrow through quark loop contributions to Higgs production
- Combining indirect and direct constraints: simultaneous fit to p_T^H ($H \rightarrow ZZ^* \rightarrow 4l$ and $H \rightarrow \gamma\gamma$) and BDT and

$m_{c\bar{c}}$ (VH($\rightarrow b\bar{b}$) and VH($\rightarrow c\bar{c}$)) \rightarrow 2D contours of κ_{h} and κ_{c} constraints

Observed 2D negative log-likelihood contours of κ_b and κ_c combining indirect and direct measurements of Higgs Yukawa coupling to bottom and charm quarks

JHEP 05 (2023) 028

Illustration of the graph neural networks (GNN) based tagger

Background rejection of three different ATLAS taggers: DL1d (new version of DL1 series), GN1 and GN2 (graph neural network based taggers)

- Classic ATLAS Flavour Tagging procedure:
 - Low level algorithms investigating track information and displaced vertices associated with jets
 - Outputs fed into high level taggers for Run2 and early Run3, deep neural • networks are used: DL1 series
 - DL1d is the newest of this kind with the best performance
- New approach all-in-one graph neural network based tagger: GN series
 - Track, jet kinematics, hit information \rightarrow predict jet flavour, classify tracks, and do track-pair vertexing
 - State-of-the-art tagger GN2: also implementing transformer architecture [1706.03762]
 - c-tagging @27% WP, compared to DL1d: same light-jet rejection, 3x b-jet rejection $(t\overline{t} \text{ sample})$

ATL-PHYS-PUB-2022-027

To improve sensitivity in high p_T region: Boosted $H \rightarrow c\bar{c}$ tagger

- High p_T regime: boosted Higgs boson decays \rightarrow large-radius (large-R) jets as the final state of $H \rightarrow c\bar{c}$
- Classic techniques: tagging the sub-jets inside the large-R jet

Higgs boson

Ton

ratio

do

= 13 TeV. Anti-k+ R=1.0 UFO iets

 $p_T > 250 \text{ GeV}, 50 < m_1 < 200 \text{ GeV}, |n| < 2$

50%

GN2X: background rejections for $H \rightarrow c\bar{c}$ tagging

Illustration of high- p_T **Higgs decay** the single b-/c-jets are close to each other thus hard to distinguish the Higgs candidate is reconstructed from a large-R jet

- Trained to separate $H \rightarrow b\bar{b}$ and $H \rightarrow c\bar{c}$ from Top and QCD multi-jet originated large-R jets
- Track information, large-R jet kinematics, sub-jet information (including GN2 outputs) are fed to GN2X
- $H \rightarrow c\bar{c}$ performance compared to tagging sub-jets with GN2 (at 50% efficiency)*:
 - **6x** $H \rightarrow b\bar{b}$ rejection
 - 5x multi-jet rejection
 - 3x top jet rejection

* The information used in the two strategies are not exactly the same

2023

2 VB DGA

 $H(c\bar{c})$ efficiency

Conclusion

- The Yukawa coupling between charm quark and the Higgs boson is an essential probe leading to better understanding the properties of Higgs-Fermion couplings
- $H \rightarrow c \bar{c}$ is a promising channel to investigate and constrain the Higgs-charm coupling strength
- ATLAS collaboration has performed a successful $VH(\rightarrow c\bar{c})$ search with full Run 2:
 - Upper limit on signal strength: $26 \times SM$
 - First direct constraint on coupling modifier κ_c: [-8.5, 8.5]
 - Combined with ATLAS $VH(\rightarrow b\bar{b})$ measurements, the Higgs-charm Yukawa coupling strength is weaker than Higgs-bottom
 - Better constraint on coupling: combined with Higgs cross-section measurements
- Future of better understanding of Higgs-charm coupling:
 - Improved c-tagging algorithms (GN2): same light-jet rejection, 3x b-jet rejection
 - Probe higher p_T for more sensitivities with newest boosted event taggers (GN2X)

Higgs coupling strength to different particles

Thanks for Listening! Any Questions?

Run: 350440 Event: 1105654304 2018-05-16 23:55:11 CEST

Back Up

— MC samples

Process	ME generator	ME PDF	PS and hadronisation	Tune	Cross-section order
$qq \to VH$ $(H \to c\bar{c}/b\bar{b})$	Powheg Box v2 + GoSam + MiNLO	NNPDF3.0nlo	Рутніа 8.212	AZNLO	NNLO(QCD) +NLO(EW)
$gg \to ZH \\ (H \to c\bar{c}/b\bar{b})$	Powheg Box v2	NNPDF3.0nlo	Рутніа 8.212	AZNLO	NLO+NLL
tī	Powheg Box v2	NNPDF3.0nlo	Рутніа 8.230	A14	NNLO +NNLL
<i>t/s</i> -channel single top	Powheg Box v2	NNPDF3.0nlo	Рутніа 8.230	A14	NLO
<i>Wt</i> -channel single top	Powheg Box v2	NNPDF3.0nlo	Рутніа 8.230	A14	Approx. NNLO
V+jets	Sherpa 2.2.1	NNPDF3.0nnlo	Sherpa 2.2.1	Default	NNLO
$qq \rightarrow VV$	Sherpa 2.2.1	NNPDF3.0nnlo	Sherpa 2.2.1	Default	NLO
$gg \rightarrow VV$	Sherpa 2.2.2	NNPDF3.0nnlo	Sherpa 2.2.2	Default	NLO

— Event selections

	Common Selections			
Central jets	≥2			
Signal jet $p_{\rm T}$	\geq 1 signal jet with $p_{\rm T}$ > 45 GeV			
<i>c</i> -jets	One or two <i>c</i> -tagged signal jets			
<i>b</i> -jets	No <i>b</i> -tagged non-signal jets			
Jets	2, 3 (0- and 1-lepton); 2, \ge 3 (2-lepton)			
$p_{\rm T}^V$ regions	75–150 GeV (2-lepton) > 150 GeV			
$\Delta R(jet1, jet2)$	$\begin{array}{l} 75 < p_{\rm T}^V < 150 \; {\rm GeV}: \; \Delta R \leq 2.3 \\ 150 < p_{\rm T}^V < 250 \; {\rm GeV}: \; \Delta R \leq 1.6 \\ p_{\rm T}^V > 250 \; {\rm GeV}: \; \Delta R \leq 1.2 \end{array}$			
0 Lepton				
Trigger	E ^{miss}			
Leptons	No loose leptons			
$E_{\rm T}^{\rm miss}$	> 150 GeV			
$p_{\rm T}^{\rm miss}$	> 30 GeV			
$\dot{H_{\mathrm{T}}}$	> 120 GeV (2 jets), > 150 GeV (3 jets)			
min $ \Delta \phi(E_{\rm T}^{\rm miss}, {\rm jet}) > 20^{\circ} (2 {\rm jets}), > 30^{\circ} (3 {\rm jets})$				
$ \Delta \phi(E_{\rm T}^{\rm miss}, H) $	> 120°			
$ \Delta \phi(\text{jet1}, \text{jet2}) $	< 140°			
$ \Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, p_{\mathrm{T}}^{\mathrm{miss}}) $	< 90°			
1 Lepton				
Trigger	<i>e</i> sub-channel: single electron μ sub-channel: $E_{\rm T}^{\rm miss}$			
Leptons	One <i>tight</i> lepton and no additional <i>loose</i> leptons			
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 30 GeV (e sub-channel)			
m_{T}^{W}	< 120 GeV			
	2 Lepton			
Trigger	Single lepton			
Leptons	Exactly two <i>loose</i> leptons			
Leptons	Same flavour, opposite charge for $\mu\mu$			
$m_{\ell\ell}$	$81 < m_{\ell\ell} < 101 \text{ GeV}$			

— Uncertainty breakdown

Source of uncertainty		$\mu_{VH(c\bar{c})}$	$\mu_{VW(cq)}$	$\mu_{VZ(c\bar{c})}$
Total		15.3	0.24	0.48
Statistical		10.0	0.11	0.32
Systematic		11.5	0.21	0.36
Statistical uncertainties				
Signal normalisation		7.8	0.05	0.23
Other normalisations		5.1	0.09	0.22
Theoretical and modelli	ng uncertainties			
$VH(\rightarrow c\bar{c})$		2.1	< 0.01	0.01
Z + jets		7.0	0.05	0.17
Top quark		3.9	0.13	0.09
W+ jets		3.0	0.05	0.11
Diboson		1.0	0.09	0.12
$VH(\rightarrow b\bar{b})$		0.8	< 0.01	0.01
Multi-jet		1.0	0.03	0.02
Simulation samples size		4.2	0.09	0.13
Experimental uncertaint	ies			
Jets		2.8	0.06	0.13
Leptons		0.5	0.01	0.01
$E_{ m T}^{ m miss}$		0.2	0.01	0.01
Pile-up and luminosity		0.3	0.01	0.01
	<i>c</i> -jets	1.6	0.05	0.16
Eleveur tegging	<i>b</i> -jets	1.1	0.01	0.03
Flavour tagging	light-jets	0.4	0.01	0.06
	au-jets	0.3	0.01	0.04
Truth flowour togoing	ΔR correction	3.3	0.03	0.10
Truin-navour tagging	Residual non-closure	1.7	0.03	0.10

 κ_c and κ_b constraints combined with $VH(\rightarrow b\bar{b})$

Input features of GN2 and GN2X

GN2 input features

Jet Input	Description
$p_{\rm T}$	Jet transverse momentum
η	Signed jet pseudorapidity
Track Input	Description
q/p	Track charge divided by momentum (measure of curvature)
$d\eta$	Pseudorapidity of the track, relative to the jet η
$\mathrm{d}\phi$	Azimuthal angle of the track, relative to the jet ϕ
d_0	Closest distance from the track to the PV in the longitudinal plane
$z_0 \sin \theta$	Closest distance from the track to the PV in the transverse plane
$\sigma(q/p)$	Uncertainty on q/p
$\sigma(\theta)$	Uncertainty on track polar angle θ
$\sigma(\phi)$	Uncertainty on track azimuthal angle ϕ
$s(d_0)$	Lifetime signed transverse IP significance
$s(z_0)$	Lifetime signed longitudinal IP significance
nPixHits	Number of pixel hits
nSCTHits	Number of SCT hits
nIBLHits	Number of IBL hits
nBLHits	Number of B-layer hits
nIBLShared	Number of shared IBL hits
nIBLSplit	Number of split IBL hits
nPixShared	Number of shared pixel hits
nPixSplit	Number of split pixel hits
nSCTShared	Number of shared SCT hits
nPixHoles	Number of pixel holes
nSCTHoles	Number of SCT holes
leptonID	Indicates if track was used in the reconstruction of an electron or muon (only for GN1 Lep)

GN2X input features

Jet Input	Description	
p_{T}	Large- R jet transverse momentum	
η	Signed large- R jet pseudorapidity	
mass	Large- R jet mass	
Track Input	Description	
q/p	Track charge divided by momentum (measure of curvature)	
$d\eta$	Pseudorapidity of track relative to the large-R jet η	
$\mathrm{d}\phi$	Azimuthal angle of the track, relative to the large-R jet ϕ	
d_0	Closest distance from track to primary vertex (PV) in the transverse plane	
$z_0 \sin \theta$	Closest distance from track to PV in the longitudinal plane	
$\sigma(q/p)$	Uncertainty on q/p	
$\sigma(\theta)$	Uncertainty on track polar angle θ	
$\sigma(\phi)$	Uncertainty on track azimuthal angle ϕ	
$s(d_0)$	Lifetime signed transverse IP significance	
$s(z_0\sin\theta)$	Lifetime signed longitudinal IP significance	
nPixHits	Number of pixel hits	
nSCTHits	Number of SCT hits	
nIBLHits	Number of IBL hits	
nBLHits	Number of B-layer hits	
nIBLShared	Number of shared IBL hits	
nIBLSplit	Number of split IBL hits	
nPixShared	Number of shared pixel hits	
nPixSplit	Number of split pixel hits	
nSCTShared	Number of shared SCT hits	
subjetIndex	Integer label of which subjet track is associated to (GN2X + Subjets only	
Subjet Input	Description (Used only in $GN2X + Subjets$)	
p_{T}	Subjet transverse momentum	
η	Subjet signed pseudorapidity	
mass	Subjet mass	
energy	Subjet energy	
$d\eta$	Pseudorapidity of subjet relative to the large- R jet η	
$\mathrm{d}\phi$	Azimuthal angle of subjet relative to the large-R jet ϕ	
GN2 p_b	<i>b</i> -jet probability of subjet tagged using GN2	
GN2 p_c	c-jet probability of subjet tagged using GN2	
GN2 p_u	light flavour jet probability of subjet tagged using GN2	
Flow Input	Description (Used only in GN2X + Flow)	
p _T	Transverse momentum of flow constituent	
energy	Energy of flow constituent	
$d\eta$	Pseudorapidity of flow constituent relative to the large- R jet η	
$\mathrm{d}\phi$	Azimuthal angle of flow constituent relative to the large-R jet ϕ	
