

Search for dark photons in rare Z boson decays with

the ATLAS detector

<u>Higgs 2023</u>

Nov. 28th, 2023

Mingyi Liu^{1,2} nh196245@mail.ustc.edu.cn

- 1. University of Science and Technology of China
- 2. Brookhaven National Laboratory

Dark photon: introduction

Motivation

- > Important candidate for dark sector: dark photon (A')
- > Hidden sector couplings and mass generation mechanisms

Gauge boson from $U(1)_D$ couples to neutral gauge boson by kinetic mixing ε Whose mass is generated from Dark Higgs h_D

$$\mathcal{L}_{int} \supset -\frac{1}{4} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} - \frac{1}{4} \hat{Z}_{D\mu\nu} \hat{Z}_{D}^{\mu\nu} + \frac{1}{2} \frac{\varepsilon}{\cos\theta_{W}} \hat{Z}_{D\mu\nu} \hat{B}^{\mu\nu} + \frac{1}{2} m_{D,0}^{2} \hat{Z}_{D}^{\mu} \hat{Z}_{D\mu} + \frac{\gamma}{4} \hat{f}_{D\mu\nu} \hat{f}_{D\mu\nu$$

Experiments searching for dark photon

3

Experiments searching for dark photon

LHC experiments (Set limits on ε vs A' mass)

The ATLAS detector

- CERN, Geneva, Switzerland
- > ATLAS size: 46m×25m, the largest LHC experiment
- Electroweak energy scale
- ➢ Full Run2 data (2015~2018), 139 fb⁻¹

Inner detector:

- |η| < 2.5
- Momentum, electrical charge
- Pixel detector, tracker (semiconductor), TRT

Calorimeters:

• EM Cal.($|\eta| < 2.5$):

e&γ, lead absorber submerged by LAr

• Hadron Cal.($|\eta| < 4.9$):

LAr with copper/tungsten absorber (forward) Scintillator tile with steel absorber (central)

Muon spectrometer:

- Tigger($|\eta| < 2.4$): TGC, RPC
- Tracking($|\eta| < 2.7$): MDT, CSC

Magnet system:

- Solenoid Magnet: 2T
- Toroid Magnets: 4T

Motivation

Search for dark photon A' from BSM rare Z decay: $Z \rightarrow A' h_D$ (h_D is the dark Higgs)

- Important candidate for the dark sector (DS)
- Hidden sector couplings

Modeling for A'

- ✓ Gauge boson from U(1)_D: $D_{\mu} = \partial_{\mu} + ie_D A'_{\mu}$ *in which*: $e_D = \sqrt{4\pi\alpha_D}$
- ✓ Couples to the SM Z boson by kinetic mixing ε : ~ $\varepsilon Z^{D}_{\mu\nu}F^{\mu\nu}$

Decay rate $\propto \alpha_D \epsilon^2$

Assumptions: (Minimal kinetically mixed)

- Br $(h_D \rightarrow A' A') = 100\%$
- A' is the lightest DS
- Br $(A' \rightarrow SM f \bar{f}) = 100\%$
- The sensitive region in ATLAS for $Z \rightarrow A' h_D$ is $5 \text{ GeV} < m_{A'} < 40 \text{ GeV}$.
- A new mass region exploring $\alpha_D \epsilon^2$

B-factories used to set limits on $\alpha_D \epsilon^2$ with the same dark-Higgs associated process, in the range $m_{A'} < 5 \ GeV$

Signal modeling

2023/11/28

•	ocusing on the scenario with $m_{A^\prime} + m_{h_D} < m_Z$ and $m_{A^\prime} < m_{h_D}$		
	Scenario	$m_{h_D} > 2m_{A'}$	$m_{\boldsymbol{h}_{\boldsymbol{D}}} \in (m_{A'}, 2m_{A'})$
	Dark Higgs decay	$h_D \rightarrow A'A'$	$h_D \rightarrow A'A'^* \rightarrow A'f\bar{f} / h_D^* \rightarrow A'A'$
	Final state requirement	$Z \to A' h_D \to A'A'A'^{(*)} \to 4l + X$	
	Monte Carlo (MC) simulation Madgraph5 (ME) + MadSpin (Decay) + Pythia8 (A1		E) + MadSpin (Decay) + Pythia8 (A14)

 m_{Z_0} (GeV)

SM Background (BKG) modeling

 Prompt BKGs (share the same 4l final state as the 	$q \xrightarrow{Z^{(*)}/\gamma^{*}} l^{+} \qquad \qquad$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$g^{g} \xrightarrow{Z^{(*)}} I^{l^{+}}$ $g \xrightarrow{H} \rightarrow ZZ \rightarrow 4l$
<u>signal process</u>)	Inclusive	Inclusive $q q \rightarrow 4l$	Sherpa
VIC bood	$Z/ZZ \rightarrow 4l$	$ggZZ$ (Non-resonance $ZZ^{(*)}$)	Sherpa
estimation	$Higgs \rightarrow ZZ \rightarrow 4l$	ggF,VBF	Powheg + Pythia
	tri-Boson (VVV)	WWZ, WZZ, ZZZ	Sherpa
	ttll	ttZ	Sherpa

- Non-prompt fake BKGs (with different final states)
- \checkmark Recognized as 4l events by mistake, due to the detector's mis-identification effect
- \checkmark Poor MC modeling, a data-driven fake factor method used

2023/11/28

Signal Region (SR)

 $Z \rightarrow 6$ final objects High multiplicities of soft particles from decay of hidden-sector particles! Low efficiency for low $p_{\rm T}$ leptons

Soft criteria for object selectionMuonElectron $p_T > 3 \text{ GeV}$ $p_T > 4.5 \text{ GeV}$ Loose W.P.s for
identification/isolation

Selections	Description	
$N_{lepton} >= 4$	No less than 4 leptons	
From Z	For all OSSF quadruplets, m_{4l} + 5 GeV < m_Z	
N _{quad} >= 1	At least one OSSF quadruplet ($\Delta R > 0.1(0.2)$ between SF (OF) leptons) $\min m_{l1l2} - m_{l3l4} (m_{l1l2} > m_{l3l4})$	
On Shell	$m_{l3l4}/m_{l1l2} > 0.85$	
J/ψ Veto	For all OSSF pairs, $m_{ll} > 5~{ m GeV}$	
$\Upsilon(\boldsymbol{b}\overline{\boldsymbol{b}})$ Veto	Mass window veto (OSSF pairs): $[m_{\Upsilon(1s)} - 0.7, m_{\Upsilon(3s)} + 0.75]$ GeV	
2023/11/28	Minavi.Liu 10	

Results

BKG modeling has been constrained and validated in CR/VR

Dominant backgrounds: qq4l, Fake Good agreement between

SM prediction and data

- Signal width for \overline{m}_{ll} under different testing points
- Width ranges: 0.2~1.4 GeV
- 1 GeV as the bin width for fitting template
- The best local sensitivity (around 25 GeV): 1.6σ
- No evidence for the SGN

$$\Rightarrow \overline{m}_{ll} = \frac{1}{2}(m_{l1l2} + m_{l3l4})$$

✓ Good physics meaning

- \checkmark Best sensitivity for most of the signal points
- \checkmark Chosen as the fitting discriminant

Systematics (prompt): theoretical/experimental uncertainties; uncertainties from the data-driven approach

Limits on $\sigma(pp \rightarrow Z \rightarrow A' h_D \rightarrow 4l + X)$

Decay rate (cross-section) $\propto \alpha_D \varepsilon^2$

Setting limits on $\alpha_D \varepsilon^2$:

- ✓ Previous range (Belle): $m_{A'} < 5 \text{GeV}$
- ✓ Extended significantly to 40 GeV

Compare with CMS/LHCb (limits on ε^2): \checkmark Some assumptions on α_D (set it as 0.1)

✓ Comparable (even better)

- First search for the dark-Higgs-strahlung process at the LHC.
- No evidence of A' signal, setting limits on the signal cross section.
- Setting limits on $\alpha_D \varepsilon^2$ in a significantly extended A' mass region.
- Reference: Search for dark photons in rare Z boson decays with the ATLAS detector, <u>arXiv:2306.07413</u>, accepted by Physical Review Letters.

Thanks

Analysis strategy

- Signal Region (SR): optimize a region rich of signals, with the best S/B sensitivity
- Control Region (CR): a region rich of BKGs, poor of signals, for constraining the major background
- Fitting: simultaneous fit in the SR and CR for background constrain, before estimating significance/setting limits.
- Validation Region(s) (VR): rich of BKGs, but more similar to the SR, to validate the background modeling
- Systematics: theoretical/experimental uncertainties; uncertainties from the data-driven approarchy^{i.Liu}

Control Region (ZCR)

Selections	S	Description	
N _{lepton} >= 4		No less than 4 leptons	
CR Z Peak	For all OSSF	For all OSSF Quadruplets, $m_Z - 5 \text{GeV} < m_{4l} < m_Z + 5 \text{GeV}$	
N _{quad} >= 1	At least one OSSF Pairir	At least one OSSF quadruplet ($\Delta R > 0.1(0.2)$ between SF (OF) leptons) Pairing: min $ m_{l1l2} - m_{l3l4} $ ($m_{l1l2} > m_{l3l4}$)	
J/ψ Veto		For all OSSF pairs, $m_{ll} > 5~{ m GeV}$	
139 fb ⁻¹		$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
BKG	CR Yields (Post-fit)	Fake $qq \rightarrow 4\ell$ $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$	$ fb^{-1} \qquad \qquad Fake \qquad - \\ qq \rightarrow 4\ell \qquad - \\ qq \rightarrow$
qq4l	1554.8 ± 47.6		
Fake	43.1 ± 25.0	⁸⁰ for the fake BKG	
ggZZ	4.2 ± 1.7		
Others	~1		t
Total	1603.7 ± 40.0		
Data	1602		
2023/1	1/28	$p_T^{\ell_3}$ [GeV]	$m_{\ell\ell}$ [GeV] 17

Validation Region (VR)

Data collected by the ATLAS

Integrated luminosity for describing the accumulated data: $\mathcal{L} = \int L dt$

Run 1 (2011~2012)

- 7~8 TeV, ~30 fb⁻¹ Run 2 (2015~2018) 13 TeV, 139 fb⁻¹
- Run 3 (2022~Now)
- 13.6 TeV, ~60 fb⁻¹

SM processes with 4l final state have small cross-sections!

2023/11/28

- Mingyi.Liu \checkmark 4*l*: very clean channel for rare process bounting

Object definition

	Muon	Electron
	$p_{ m T}$ > 3GeV $p_{ m T}$ > 15GeV if Calo-tagged	$p_{ m T} > 4.5 { m GeV}$ $ \eta < 2.47$
Baseline	$ \eta < 2.7$	Pass object quality (<u>isGoodOQ</u>)
ieptons	$z_0 sin heta < 0.5$ mm if μ isn't SA	$z_0 sin heta < 0.5 \ { m mm}$
	ID: Loose working point	ID: Loose working point
	Overlap removal between μ/e	Overlap removal between $\mu/e \& e/e$

	Fulfill Baseline requirements		
Signal leptons	$ d_0/\sigma_{d_0} $ < 3 if μ isn't SA	$ d_{0}/\sigma_{d_{0}} < 5$	
(Tight leptons)	ID: the same as baseline	ID: LooseAndBLayerLLH W.P.	
	Isolation: PflowLoose_VarRad W.P.	Isolation: FCLoose W.P.	

Baseline leptons fail the signal-lepton requirements

Loose leptons

Data and triggers

- Data: Full Run 2 data, 13 TeV, 139 fb⁻¹
- Trigger list (single lepton, di-lepton, tri-lepton soft triggers)

2015	HLT_mu20_iloose_L1MU15 HLT_mu50 HLT_mu18_mu8noL1 HLT_e24_Ihmedium_L1EM20VH HLT_e60_Ihmedium HLT_e120_Ihloose HLT_2e12_Ihloose_L12EM10VH
2016~2018	HLT_mu26_ivarmedium HLT_2mu14 HLT_mu22_mu8noL1 HLT_e26_lhtight_nod0_ivarloose HLT_e60_lhmedium_nod0 HLT_e140_lhloose_nod0 HLT_2e17_lhvloose_nod0_L12EM15VHI HLT_e17_lhloose_nod0_mu14 HLT_e12_lhloose_nod0_2mu10 HLT_2e12_lhloose_nod0_mu10

Trigger efficiency only ~70%
→ Global trigger scale factor implemented (Pseudo-experimental method)

Fake BKG: Fake enriched region and fake factor

Fake leptons from Z + jets / tt / WZ, poor modeling: Data-driven fake factor method
 Fake enriched region defined to calculate fake factor (F.F.)

$$\begin{array}{l} N_{\text{Baseline lepton}} \geqslant 3 \\ N_{\text{OSSF signal lepton pair}} \geqslant 1 \\ \left| m_{\text{Signal lepton pair}} - m_{Z} \right| < 15 \ \text{GeV} \end{array}$$

- F.F. is calculated by the baseline leptons aside from the *Z*-decayed pair
- Parametrized by $(p_T, \eta, lepton flavor)$
- MC contaminant judged by MC information

$$F.F. = \frac{N_{Data}^{Tight} - N_{Prompt MC}^{Tight}}{N_{Data}^{Loose} - N_{Prompt MC}^{Loose}}$$

Apply fake factors to 4l events with loose leptons that can enter the SR (FFAR):

Systematics for fake BKG

➢ Fake source uncertainty (Impact on the F.F. from the *b*-jet sources, dominant)

- ➢Uncertainty of fake factor
 - MC subtraction uncertainty (uncertainties of the subtracted prompt BKGs)
 - ✓ Statistical uncertainty in the Fake enriched region when calculating the F.F.s

➢ From the F.F. application region (FFAR) when calculating fake yields

- ✓ MC subtraction uncertainty
- ✓ <u>Statistical uncertainty (Dominant, due</u> to low statistics)

The secondary dominant		
background		
Fake yield (SR)	9.45	
A.R. Stat.	41.38%	
A.R. Theo.	4.45%	
F.F. Stat.	3.07%	
F.F. Theo.	4.87%	
Fake source	50.32%	
Total	66.21%	

Statistical analysis

Simultaneous fit of the SR and CR, with floating normalization factor μ_b for the dominant SM 4*l* background. [POI: μ_s (signal strength); NPs: Systematics θ_i , normalization factor μ_b for BKG]

$$L(\mu; \sigma) = \prod_{j}^{syst.\,num} L_{gauss}(\theta_j) \prod_{i}^{bins} L_{poiss} (N_{data} \mid \mu_s s(\theta_j) + \mu_b b(\theta_j))_i$$

- > Discriminant: $\overline{m}_{ll} = \frac{1}{2}(m_{l1l2} + m_{l3l4})$
- ➢ Binning (GeV): Y(bb̄) window
 [0,5,6,7,8,8.76,11.105,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41, 42,43,44,45,46,47,48,49,50]

Systematics for prompt processes

Experimental Uncertainties

- > Detecting uncertainties for electrons and muons (Identification, energy resolution …)
- ➤ Trigger S.F. uncertainties
- Pileup, luminosity uncertainties
- ➤ Total Exp. uncertainty ~ 7% (5%) for SGNs (BKGs) in the SR.

Theoretical Uncertainties

- PDF + α_s Unc.
 - > Envelope: NNPDF3.0 (100 internal variations, standard deviation) and CT14 (Nominal)
 - ➤ ~2% for both SGNs and BKGs
- QCD scale Unc.
 - > Envelope: { μ_R , μ_F } = {0.5, 0.5}, {0.5, 1.0}, {1.0, 0.5}, {1.0, 2.0}, {2.0, 1.0}, {2.0, 2.0}
 - \blacktriangleright ~14% for SGNs, ~8% (5%) for qqZZ in the SR (CR)
- Parton showering uncertainty
 - ➢ For SGNs: Pythia8 (A14) vs Herwig7 (UE-MMHT) (Truth level), very tiny, ~ 1%
 - For qqZZ: Shape comparison between the Sherpa sample and the Powheg+Pythia8 sample (conservative), ~10% (2%) in the SR (CR)

Dark photon: CR distributions

Dark photon: VR distributions

Dark photon: SR distributions

2023/11/28

l mass spectrum by the ATLAS

