

Higgs2023 November 27- December 1, 2023, Beijing-China

Tahir Javaid (Beihang University, Beijing)

On behalf of the **CMS collaboration**

Overview

- *Higgs boson discovered in 2012 at CERN
- *Its properties have been measured with evolving precision since the discovery
 - Couplings, cross-section and etc.
- *Several decay modes studied so far.

Tahir Javaid

Higgs boson cross-section measurements in fermionic final states with the CMS detector

- Inclusive Signal Strengths, STXS

- Inclusive Signal Strengths, STXS, inclusive and differential XS (resolved and boosted)

Higss production in *bb* final state

$*H \rightarrow bb$

- Signal Strengths, STXS

Tahir Javaid

Higgs boson cross-section measurements in fermionic final states with the CMS detector

Higgs2023-IHEP(Beijing) 3

[CMS-PAS-HIG-21-020], [CMS-PAS-HIG-19-011], [CMS-PAS-HIG-22-009], [CMS-PAS-HIG-20-001], [CMS-PAS-HIG-22-011]

$(VBF) H \rightarrow bb$

*Events categorization in Loose and Tight VBF with BDT Classifier

*Scale and Smearing corrections applied to DeepNN-based regressed b-jets

*Background estimation:

- Resonant Z(bb) + jets [DY & EWK] (simulation) \bullet
- Continuum QCD multijet production (fit to \bullet data) [80, 104] & [146, 200] GeV

*VBF Parton shower and JES being leading systematic sources

* Simultaneous fit to $m_{b\bar{b}}$ extract signal

https://arxiv.org/abs/2308.01253

sub. to JHEP

$V(W/Z \rightarrow leptons) H \rightarrow bb$

*Inclusive measurement of VH (WH+ZH) production

*3 channels are considered for V:

- 0-lepton $(Z \rightarrow \nu \nu)$
- 1-lepton $(W \rightarrow \ell \nu)$
- 2-lepton $(Z \rightarrow \ell \ell)$; kinematic fit applied
- * Fit to SR and orthogonal control regions (CRs):
 - tt
 - V+HF(heavy flavor)
 - V+LF (light flavors)
- ★ Multi-category DNN in V+HF CR

* **DNN** for signal classification and extraction

- 8 VH categories (pT and jet multiplicity; 5 ZH & 3 WH)
- *Sim. Modeling, b-tagging, JER being leading systematic sources

CMS **Simulation Preliminary** $Z(I^{\dagger}I^{\dagger})H(b\overline{b})$ p^z₋ > 150 GeV 124.3 GeV. σ=11.4 Ge\ earession + FSR recove 0.08 124.1 GeV, σ=14.7 GeV 0.06 0.04 0.02

Boosted VBF/ggH) $H \rightarrow bb$: Analysis Strategy

* Higgs at large pT (>450 GeV considered)

- To probe BSM effects in scalar sector, test higher-order \bullet EW radiative corrections in H production
- *Generalized energy correlation functions for 2-prong (W/Z/ H) tagging [JHEP 1612 (2016) 53]
 - Mass-decorrelated version; using the <u>Designed</u> Decorrelated Tagger method [JHEP 1605 (2016) 156]
- *Updated multivariate <u>Deep Double B-Tagger</u> (DDB)
 - Signal significance increased by twice \bullet
- * Jet substructure and novel b-tagging (DDB fail region) to reject QCD

*ML fit to the observed m_{SD} distributions for ggH and VBF

*W and Z boson resonances used to constraint syst. unc.

(Boosted VBF/ggH) $H \rightarrow bb$: Results

*Observed inclusive Signal Strengths:

- VBF process: $5.0^{+2.1}_{-1.8}$
 - Significance: obs(exp.) $\rightarrow 3.0\sigma (0.9\sigma)$
- ggF process: $2.1^{+1.9}_{-1.7}$
 - Significance: obs(exp.) $\rightarrow 1.2\sigma (0.9\sigma)$

*Observed differential Signal strengths:

- In p_T bins for ggF
- Inv. mass of forward jets for VBF

[CMS-PAS-HIG-21-020]

(Boosted VBF/ggH) $H \rightarrow bb$: Results

*Observed inclusive Signal Strengths:

- VBF process: $5.0^{+2.1}_{-1.8}$
 - Significance: obs(exp.) $\rightarrow 3.0\sigma (0.9\sigma)$
- ggF process: $2.1^{+1.9}_{-1.7}$
 - Significance: obs(exp.) $\rightarrow 1.2\sigma$ (0.9 σ)

*Observed differential Signal strengths:

- In p_T bins for ggF
- Inv. mass of forward jets for VBF lacksquare

[CMS-PAS-HIG-21-020]

$t\bar{t}H/tH$, with $H \rightarrow bb$: Analysis Strategy

*3 channels are considered:

- Fully Hadronic (FH): 0-leptons ($W \rightarrow q\bar{q}$) lacksquare
- Semi leptonic (SL): 1-lepton ($W \rightarrow \ell \nu$)
- Dileptonic (DL): 2-leptons (2 x $W \rightarrow \ell \nu$) \bullet
- * categorization done with *jet* and b-tag multiplicity (inclusive, STXS).
- ***ANNs** trained for sig./bkg. separation, further categorization, and building **discriminants**
- *Improvements w.r.t. (CMS-PAS-HIG-18-030):
 - dominant QCD bkg. estimation (FH); data-driven
 - (Refined) neural network classifiers
 - DeepJet b tagging algorithm

$t\bar{t}H/tH$, with $H \rightarrow bb$: Results

 $\star t\bar{t}H$:

- inclusive
 - $\mu_{t\bar{t}H} = 0.33 \pm 0.26$

significance: obs.(exp.) 1.3σ (4.1 σ)

- Background normalization ($t\bar{t}B, t\bar{t}C$)
- exclusive in p_T bins

$\star tH$ (inclusive):

- Expected and observed 95% CL upper limits
- Simultaneous with $t\bar{t}H$

[CMS-PAS-HIG-19-011]

$|ZZ/ZH \rightarrow 4b|$

*A search for ZZ and ZH production in the *bbbb* final state

larger XS than HH \bullet

*Multi-class multivariate classifier (4b)

Extract the signal and background model lacksquare

*Major (multi-jet) background estimated from data

*Novel approach to validate the background model

Using synthetic data \bullet

*Signal vs Background **probabilities**

Combined fit in ZZ and ZH regions

[CMS-PAS-HIG-22-011]

Higss production in $\tau\tau$ final state

 $*H \to \tau \tau$

- Signal Strengths, STXS, inclusive and differential (resolved and boosted)

10.1140/epjc/s10052-023-11452-8 10.1103/PhysRevLett.128.081805 CMS-PAS-HIG-21-017

$\rightarrow \tau \tau$: Analysis Strategy

*SS, STXS and differential cross-sections

*4 channels considered in ggF and VBF productions:

• $\tau_h \tau_h, \mu \tau_h, e \tau_h, e \mu$

*Events categorized according to jets' p_T and the multiplicity (**NN** multiclassification for signal and background)

*Majority of background estimated from data

- Genuine $\tau\tau$ events: estimated using <u>Tau Embedding</u>
- Jet misidentified as τ_h : Fake factor (F_F) Method

$\tau\tau$: Results (differential)

*Measured in fiducial region defined to match the offline selection for each decay channel

 "OutsideAcceptance" events fixed to SM and treated as background

*Reported Differential measurements

- Observables (resolved) : p_T^H , N_{jets} and p_T^{j1}
- Observables (boosted): p_T^H , $p_T^{J_1}$
 - Final observable is NN output
- In agreement with SM

10.1140/epjc/s10052-023-11452-8

$\tau\tau$: Results (differential)

- *Measured in fiducial region defined to match the offline selection for each decay channel
 - "OutsideAcceptance" events fixed to SM and treated as background
- *Reported Differential measurements
 - Observables (resolved) : p_T^H , N_{jets} and p_T^{j1}
 - Observables (boosted): p_T^H , $p_T^{J_1}$
 - Final observable is NN output
 - In agreement with SM \bullet

10.1140/epjc/s10052-023-11452-8 10.1103/PhysRevLett.128.081805

Summary

*Presented the recent Higgs cross sections measured in fermionic final states

- Run 2 CMS data
- Several fronts explored in $H \rightarrow bb$ and $H \rightarrow \tau\tau$ decay modes:
 - SS, STXS, differential (compared with theory predictions)

in this regime

*Run 3 data would provide us the opportunity to explore more fine granularity to see the BSM effects (if any)

Inank

Tahir Javaid

Higgs boson cross-section measurements in fermionic final states with the CMS detector

BACKUP SLIDES

Vector Boson Fusion (VBF) process: second most dominant Higgs production @LHC

cross section ~ 3.78 pb (a) $\sqrt{s} = 13$ TeV with N²LO QCD & NLO EWK accuracy.

- \rightarrow Br(H \rightarrow bb) : largest, ~ 58%
- \rightarrow VBFHbb process at tree level probes C_V (HVV) coupling at the production and y_{h} (Hbb) coupling at the decay.

Experimental challenges

- \rightarrow Overwhelming QCD multijet background
- \rightarrow Large resonant Z \rightarrow bb background (overlapping with the signal in the higher tail of the Z peak)
- \rightarrow Triggering VBFHbb events with high efficiency at reasonable rate

Signatures of VBF process:

- \rightarrow Two forward-backward jets from the outgoing scattered partons
- \rightarrow Mostly with moderate $p_T =>$ positioned at the higher $|\eta|$ region, reasonably large rapidity gap ($\Delta \eta_{ii}$)
- \rightarrow High dijet invariant mass (m_{ii})
- \rightarrow jet pair termed as **VBF jets**

Strategy (Resolved analysis dealing with AK4 jets : 2 b-jets from Higgs decay + 2 VBF jets) \rightarrow Dedicated HLT Triggers based on the VBF & b-tag requirements \rightarrow Multivariate analysis techniques (MVA) to discriminate signal against major backgrounds \rightarrow Reconstructed Higgs candidate mass (invariant mass of two b jets, m_{bb}) distribution is used to extract signal.

 $process \rightarrow allowed strength varies over$ considerably large range.

$t\bar{t}H/tH$, with $H \rightarrow bb$: Results

$\star t\bar{t}H$:

- inclusive
 - $\mu_{t\bar{t}H} = 0.33 \pm 0.26$

significance: obs.(exp.) 1.3σ (4.1 σ)

- Background normalization ($t\bar{t}B, t\bar{t}C$)
- exclusive in p_T bins
- $\star tH$ (inclusive):
 - Expected and observed 95% CL upper limits
 - Simultaneous with $t\bar{t}H$

[CMS-PAS-HIG-19-011]

$H \rightarrow \tau \tau$

Why are we interested in Higgs couplings to fermions?

- In the SM, fermions interact with Higgs boson via Yukawa couplings
- In the many **BSM** theories, deviations of the couplings of the observed Higgs boson to down-type fermions is implied

Why do we use $H \rightarrow \tau \tau$?

- Particularly sensitive to the Higgs boson production at high p_T^{Higgs} and with jets

Analysis targets

• ggF and VBF productions using $H \rightarrow \tau_h \tau_h$, $\mu \tau_h$, $e \tau_h$, $e \mu$ final states to measure μ and $\sigma \times BR(H \rightarrow \tau \tau)$

The H $\rightarrow \tau\tau$ decay allows to demonstrate direct coupling of the H boson to fundamental fermions

STXS

- Higgs kinematics can be sensitively modified by BSM physics
- <u>"Simplified Template Cross</u> <u>Sections</u> approach: Measure cross sections separated into production modes, inclusively over the Higgs in specific regions of decays, phase-space ("bins"), defined in terms of specific kinematic variables (p_T^H, m_{jj}, p_T^{Hjj}, p_T^V)
- STXS provide a largely modelindependent way to test for BSM deviations in kinematic distributions.
- Specific bins defined in coordination with the theoretical community

$\rightarrow \tau \tau$: Analysis Strategy (Irreducible background estimation)

- Estimate all backgrounds with two real τ
- Select di-muon events from data, remove muon hits
- Muons are replaced by simulated taus with the same kinematics
- Advantages
 - Decent description of jet and underlying event
 - Less systematic uncertainties
- Used in HIG-18-032

Note:

MET covariance matrix issue does not effect on this analysis

$\tau\tau$: Results (STXS)

Table 9 Tabulated values of the STXS stage-0 and -1.2 signal strengths for the combination of the (CB) CB-, resp. (NN) NN-analysis with the VH-analysis. The upper four lines refer to the inclusive and STXS stage-0 measurements. The values in braces correspond to the expected 68%

confidence intervals for an assumed SM signal. The products of cross sections and branching fraction to τ leptons as expected from the SM with the uncertainties as discussed in Sect. 10.4 are also given

				SM (fb)	μ_s (CB)
Inclusive				3422.28 ± 0.05	$0.93 \pm_{0.12}^{0.12} (_{0.13}^{0.13})$
ggH				3051.34 ± 0.05	$0.97 \pm_{0.18}^{0.20} (_{0.22}^{0.24})$
qqH				328.68 ± 0.03	$0.68 \pm_{0.23}^{0.24} (_{0.23}^{0.24})$
VH				44.19 ± 0.03	$1.80 \pm_{0.42}^{0.46} (_{0.37}^{0.41})$
	N _{jet}	$p_{\rm T}^{\rm H}$ (GeV)			
ggH	= 0	0–10		423.58 ± 0.13	$-0.18\pm^{0.46}_{0.46}~(^{0.45}_{0.44})$
		10-200		1329.36 ± 0.07	
		0–60		451.09 ± 0.14	$-0.87 \pm ^{1.21}_{1.21} (^{1.06}_{0.99})$
	= 1	60–120		287.68 ± 0.14	$3.37 \pm ^{1.23}_{1.13} (^{0.90}_{0.83})$
		120-200		50.04 ± 0.19	$1.94 \pm \substack{1.21\\1.24} \begin{pmatrix} 1.04\\0.90 \end{pmatrix}$
	≥ 2	0–200		306.26 ± 0.23	$0.05 \pm_{1.53}^{0.88} (_{0.71}^{0.83})$
		200-300		27.51 ± 0.42	$0.70 \pm \substack{0.89\\1.29}$ $(\substack{0.91\\0.77})$
		300–∞		7.19 ± 0.47	$1.65 \pm ^{1.28}_{1.46} (^{1.20}_{0.96})$
	N _{jet}	$p_{\mathrm{T}}^{\mathrm{H}}$ (GeV)	m _{jj} (GeV)		
qqH		0–200	350 - 700	34.43 ± 0.04	$-0.29 \pm ^{1.77}_{1.44} (^{1.31}_{1.32})$
	≥ 2	0–200	$700-\infty$	47.48 ± 0.04	$0.68 \pm_{0.38}^{0.39} (_{0.38}^{0.39})$
		200–∞	350–∞	9.90 ± 0.03	$0.69 \pm_{0.45}^{0.58} (_{0.43}^{0.45})$
	$N_{\rm jet} < 2 \text{ or } m_{\rm jj} [0, 350] {\rm GeV}$			209.46 ± 0.03	$1.94 \pm \substack{4.55\\2.93} \begin{pmatrix} 2.15\\2.16 \end{pmatrix}$
		$p_{\rm T}^{\rm V}({\rm GeV})$			
WH		0–150		20.57 ± 0.03	$0.77 \pm_{0.91}^{0.95} (_{0.85}^{0.90})$
		150–∞		3.30 ± 0.05	$2.65 \pm \substack{1.38\\1.26} \begin{pmatrix} 1.26\\1.15 \end{pmatrix}$
ZH		0–150		11.99 ± 0.06	$1.97 \pm \substack{0.90\\0.81} \begin{pmatrix} 0.79\\0.71 \end{pmatrix}$
		150–∞		2.55 ± 0.10	$2.23 \pm \substack{1.01\\0.82} \substack{0.78\\0.61}$

Tahir Javaid

Higgs boson cross-section measurements in fermionic final states with the CMS detector

 $0.16 \pm_{0.34}^{0.35} (_{0.35}^{0.37})$

 $0.79 \pm_{0.91}^{0.94} (_{0.85}^{0.90})$

 $2.65 \pm \substack{1.37\\1.25} (\substack{1.26\\1.15})$

 $2.00 \pm \substack{0.91 \\ 0.81} \begin{pmatrix} 0.79 \\ 0.71 \end{pmatrix}$

 $2.18 \pm ^{1.00}_{0.82} (^{0.78}_{0.61})$

 $-0.99\pm^{1.21}_{1.19}~(^{1.23}_{1.18})$

[CMS-PAS-HIG-19-010]

- $\mu_{incl} = 0.82 \pm 0.11$
 - p-value for compatibility of incl. with SM: 0.10
 - Correlation b/w μ_{ggH} and μ_{qqH} : -0.35

