

中國科學院為能物昭納完所 Institute of High Energy Physics Chinese Academy of Sciences

Measurement of Higgs boson mass using bosonic decay channels with the CMS detector

Fabio lemmi ¹

on behalf of the CMS Collaboration

Higgs2023, Beijing, China November 29th, 2023

¹ Institute of high energy physics (IHEP), Beijing, China

Introduction: Higgs boson mass

- Higgs boson mass (m_H) not predicted by the theory
- All properties of Higgs boson (couplings, branching ratios...) depend on m_H
- Motivates precision measurements of m_H
- Measurement is carried in high resolution channels
 - о **H(**үү)
 - H(4L)

Introduction: Higgs boson mass

- m_H (and m_t) determine behavior of electroweak vacuum
 - Cosmological implications [<u>1</u>]
- Precise knowing of m_H leads to overconstrained checks of SM self-consistency

$$m_{\rm W} = \left(\frac{\pi\alpha}{G_{\rm F}\sqrt{2}}\right)^{\frac{1}{2}} \frac{1}{\sin\theta_{\rm W}\sqrt{1 - f(m_{\rm t},\log(m_{\rm H}))}}$$

4

Introduction: $\gamma\gamma$ and 4L decay channels

- Higgs decays to yy and 4L are best suited for mass measurements
- Very clean final states, with good S/(S+B)
- Properties of decay products can be known very precisely
- Natural width $\Gamma_{\rm H}$ predicted to be very small (~ 4 MeV) for m_H = 125 GeV
 - Much below experimental resolution
- Possible to measure Γ_H using off-shell decays

m_H in H(γγ): <u>Phys. Lett. B, 805 (2020)</u>

- Small BR (~0.23%) but clean final state
- Use **data collected in 2016** (36 fb⁻¹)
- Analysis strategy similar to previous CMS analyses [<u>1</u>]
- Measurement refined through better detector calibration and understanding of systematics
- Improved description of data-MC nonlinear discrepancies in energy scale
- Developed a method to evaluate systematic due to radiation damage in ECAL

Photon energy (E_v) calibration

- **Critical**: calibration of ECAL response to photons
- **First**: compute E_y summing calibrated and corrected energies from ECAL deposits
- Second: multivariate regression [1] applied on top of E_y from ECAL deposits. Corrects for:
 - Incomplete containment of EM showers
 - Energy losses from conversions upstream of ECAL
 - Pileup effects
- **Third**: correct for residual differences between data and MC in E_y scale and resolution
 - Done in a three-step procedure

* Low/high R9: converted/unconverted photon

7

Residual scale and resolution corrections

- Residual corrections to E_y scale and resolution **derived in Z(ee)**, with electrons reconstructed as photons
- Correct for long-term shifts for E_y scale (per LHC-fill)
- 2. Derive corrections for E_{γ} scale and resolution in bins of $|\eta|$, R9^{*}
- 3. Derive corrections for ${\rm E}_{_{Y}}$ scale in bins of $|\eta|$ and $p_{_{T}}$
 - a. Accounts for any small non-linear response of crystals with energy

Event classification; signal & background modeling

- Preselection kinematic cuts on yy pair [1]
- Train **2 MVA algorithms**:
 - VBF BDT
 - Diphoton BDT
- VBF BDT separates VBF from ggH
- **Diphoton BDT**: assign high score to signal-like, high resolution diphoton pairs
- **First**: separate events in 3 VBF categories based on VBF BDT score boundaries
- **Second**: separate remaining events in 4 ggH categories based on diphoton BDT score boundaries
- **Signal model**: sum of <= 4 Gaussians for each production mode
- **Background model**: from sidebands in data, discrete profiling method

Systematic uncertainties

- **E**_y **scale and resolution**: vary R9 distribution and selection criteria of Z(ee) electrons
- Residual p_τ dependance of scale corrections
 - Corrections for Z(ee) electrons ($< p_T > \approx 45$ GeV) used for H(yy) photons ($< p_T > \approx 60$ GeV)
 - Apply residual corrections a second time over corrected data and re-obtain corrective factors; deviations from unity taken as systematic
- Non-uniformity of light collections due to radiation damage
 - Scale corrections derived in Z(ee), applied to photons
 - Photons penetrate $\approx 1X_0$ more than electrons in ECAL crystals
 - Developed and validated dedicated light collection efficiency model [<u>1</u>, <u>2</u>]

Results

 Binned maximum likelihood to all 7 analysis categories

 $m_{\rm H} = 125.78 \pm 0.18 ({\rm stat.}) \pm 0.18 ({\rm syst.}) \,{\rm GeV}$

• Precision of measurement at the per-mille level

m_{H} and Γ_{H} in H(4l): <u>CMS PAS HIG-21-019</u>

- Very small BR (1.24 x 10⁻⁴) but very clean final state
- Use data collected in Run2 (138 fb⁻¹)
- Analysis strategy similar to previous CMS analyses [<u>1</u>]
- Measurement of m_H refined through better detector calibration, analysis strategy and understanding of systematics

- Measure the Higgs boson natural width Γ_H using on- and off-shell events
- Γ_H precisely predicted by SM (≈ 4 MeV)
- Modified Higgs couplings or undiscovered decays could modify Γ_H
 - Important to measure

Improvements in m_H measurement

- Vertex-beamspot (VXBS) constraint: 4L tracks constrained to common vertex compatible with beam spot
 - 3–8% mass resolution improvement
- Constraint on intermediate
 on-shell Z: p_T of dilepton pair
 should give Z true lineshape
- Categorize events based on δm_{4L}/m_{4L}: isolate events with high mass resolution from the others
 - ≈ 10% mass resolution improvement

Event classification; signal & background modeling

- Select 4 prompt isolated leptons

 Build Z candidates and H candidate
- Split events in 9 categories based on δm_{4L}/m_{4L}
 - Equal amount of signal events in each
- **Signal model**: DSCB + Landau
 - + Breit-Wigner when measuring $\Gamma_{_{\rm H}}$
- Background model
 - Irreducible: from MC, Bernstein pol. degree 3
 - Reducible: from control region in data (fake-rate method), Landau

m_H results

 Maximum likelihood fit to m_{4L} and kinematic discriminant D_{bkg}

 $m_{\rm H} = 125.04 \pm 0.11 ({\rm stat.}) \pm 0.05 ({\rm syst.}) \,{\rm GeV}$

• Results are combined with Run1 data [<u>1</u>]

 $m_{\rm H} = 125.08 \pm 0.10 ({\rm stat.}) \pm 0.05 ({\rm syst.}) \,{\rm GeV}$

• Most precise single-channel measurement to date

$\Gamma_{\rm H}$ off-shell measurement

- Previous measurement by CMS [1] in Z(2L2v) and Z(4L)
- Measurement of Γ_{μ} from off-shell measurements relies on **assumptions**
 - Knowledge of coupling ratios between on- and off-shell production

$$\frac{\sigma_{\rm vv \to H \to 4\ell}^{\rm off-shell}}{\sigma_{\rm vv \to H \to 4\ell}^{\rm on-shell}} \propto \Gamma_{\rm H}$$

- **ggH loop** production is **dominated by top and has no BSM** contributions
- Also, off-shell region characterized by **sizeable interference between H boson signal and continuum background**
- PDF describing data must **account for interference and cross-feeding**

$$\mathcal{P}_{jk}(\vec{x};\vec{\xi}_{jk},\vec{\zeta}) = \frac{\mu_j \Gamma_{\mathrm{H}}}{\Gamma_0} \,\mathcal{P}_{jk}^{\mathrm{sig}}(\vec{x};\vec{\xi}_{jk}) + \sqrt{\frac{\mu_j \Gamma_{\mathrm{H}}}{\Gamma_0}} \mathcal{P}_{jk}^{\mathrm{int}}(\vec{x};\vec{\xi}_{jk}) + \mu_j \mathcal{P}_{jk}^{\mathrm{cross}}(\vec{x};\vec{\xi}_{jk}) + \mathcal{P}_{jk}^{\mathrm{bkg}}(\vec{x};\vec{\xi}_{jk}) + \mathcal{P}_{jk}^{\mathrm{bkg}}(\vec{x};\vec{\xi}_{jk}) + \mathcal{P}_{jk}^{\mathrm{bkg}}(\vec{x};\vec{\xi}_{jk}) + \mathcal{P}_{jk}^{\mathrm{cross}}(\vec{x};\vec{\xi}_{jk}) + \mathcal{P}_{jk}^{\mathrm{bkg}}(\vec{x};\vec{\xi}_{jk}) + \mathcal{P}_{jk}^{\mathrm{bkg}}(\vec{x};\vec{\xi};\vec{\xi}$$

$\Gamma_{\rm H}$ off-shell measurement

- Select region m_{4L} > 220 GeV
- 3 exclusive categories: VBF tagged, VH tagged, untagged
- Fit **3 observables**: m₄₁ + 2 kinematic discriminants
- Model with 4 parameters of interest: $m_H \Gamma_H$, μ_F , μ_V

$\Gamma_{\rm H}$ off-shell measurement

- Extract $\Gamma_{\rm H}$: $\Gamma_{\rm H} = 2.9^{+2.3}_{-1.7} {\rm ~MeV}$
- Off-shell $\mu_{\text{F}},\,\mu_{\text{V}}$ in agreement with SM prediction

Conclusions

- The CMS Collaboration is measuring the Higgs boson mass and natural width using the canonical high-mass-resolution channels: yy and 4L
- Per-mille level of precision on m_H in H(γγ) decay channel, using 2016 data
- Most precise single-channel measurement on m_H in H(4L) decay channel, using full Run2 dataset
- Measured Γ_{H} using off-shell events in H(4L) decay channel
- Other efforts are ongoing

Backup slides