Constraining the Shape of the Higgs Potential Through a Search for **Higgs Boson Pairs** in the **bbtt** Final State with the **ATLAS** Experiment

Brian Moser (CERN) on behalf of the ATLAS collaboration

Higgs 2023 - Beijing

The Higgs potential and searches for HH measured coupling i $\kappa_i =$ SM prediction

Despite its significance the shape of the Higgs potential remains largely unconstrained

- The shape is probed through determining the strength of Higgs boson self-interactions λ in searches for HH production [in SM: $\lambda \sim 1/8$]
- ▶ $pp \rightarrow HH \rightarrow bb\tau\tau$: rel. high BR (~7.3%) and multijet rejection from di- τ system \rightarrow one of the most sensitive channels

Brian Moser

ATLAS Run 2 pp \rightarrow HH \rightarrow bbtt

New: re-analysis of the Run 2 data set focusing on the non-resonant part [public page] 28/11/2023 ATLAS Run 2 pp \rightarrow HH \rightarrow bbtt Brian Moser

Event selection

Extended categorization to improve constraints on HHH and HHVV coupling

Brian Moser

ATLAS Run 2 pp \rightarrow HH \rightarrow bbtt

M_{HH} categorization to improve the κ_{λ} constraint

Improved BDT:

Additional inputs (b-tagger quantiles of jets, event shapes, ...)

Separate training against enhanced λ signal in low-m_{HH} region

ggF HH vs. VBF HH categorization BDT

constraint

- A BDT is trained to separate ggF HH from VBF HH on events with 4 jets (two VBF-jet candidates + two $H \rightarrow bb$)
- Input variables are typical **VBF quantities** like m_{jj}VBF, ΔR_{jj}VBF, $\eta_{iet1} \propto \eta_{iet2}$ as well as event shape variables (Fox Wolfram Moments)
- Categorization cut chosen not to penalize k_{λ} constraint and inclusive HH signal strength limit

Brian Moser

ATLAS Run 2 pp \rightarrow HH \rightarrow bbtt

Events / 0.

600

500

700 - ATLAS Preliminary

 $\tau_{had}^{}\tau_{had}^{}$, 2 b-tags

 \geq 4 jets

 $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$

ggF HH x 350

Top-quark

Data

VBF HH x 6000

Jet $\rightarrow \tau_{had}$ fakes

Z + (bb, bc, cc)

Main backgrounds and how to control them

Main backgrounds:

Improvements:

- Improved V+jets simulation
- 4 x more MC statistics for main backgrounds

Signal is extracted through a joint fit to all SRs and the CR

Brian Moser

ATLAS Run 2 pp \rightarrow HH \rightarrow bbtt

Control region

[from anti-ID CR extrapolated] into the SR with fake factors]

Control region kinematically closer to signal region \rightarrow less reliance on extrapolation unc.

Fit results Thad Thad

Events / bin

Data/Pred.

1.5±

3

2

1

10⁴

8

9

6

7

5

10

Iow m_{HH} SR

11 12 13 14

BDT score bin

HH signal scaled to combined signal strength included in both the stack and the ratio

ATLAS Run 2 pp \rightarrow HH \rightarrow bbtt

Data/Pred.

.5F

Brian Moser

high m_{HH} SR

Fit results Tlep Thad (SLT)

Events / bin Events / bin ____ ggF HH x 2000 10 **ATLAS** Preliminary — VBF HH x 2000 $10^{6} \models \sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{1}$ Data Ó **SM HH (μ=2.2) 10**⁵ $\tau_{lep} \tau_{had}$ SLT, 2 b-tags Top-quark ___ ggF SR, m_{µµ} < 350 GeV Jet $\rightarrow \tau_{had}$ fakes 10⁵ Z + (bb, bc, cc)10⁴ Other SM Higgs 10⁴ Uncertainty **10³** Pre-fit background 10^{3} 10² 10² 10 10 Data/Pred. Data/Pred. .5E 1.2 0.8⊧ 0.6 11 12 13 14 8 10 2 3 6 7 9 2 5 BDT score bin

Iow m_{HH} SR

HH signal scaled to combined signal strength included in both the stack and the ratio

Brian Moser

ATLAS Run 2 pp \rightarrow HH \rightarrow bbtt

high m_{HH} SR

Fit results Tlep Thad (LTT)

Iow m_{HH} SR

HH signal scaled to combined signal strength included in both the stack and the ratio

Brian Moser

ATLAS Run 2 pp \rightarrow HH \rightarrow bbtt

high m_{HH} SR

Limits on enhanced $pp \rightarrow HH$ cross-sections

No significant excess observed above the SM prediction (μ =1) Observed limit higher than expected due to a stat. fluctuation in the $\tau_{lep}\tau_{had}$ SLT high m_{HH} region

<u>Upper limits at 95% CL:</u>

 μ_{HH} < 5.9 observed < 3.1 expected, 20% reduction wrt previous results

Can set limits **simultaneously** on **ggF** and **VBF** production cross-section thanks to new VBF SR:

NEW

 μ_{ggF} < 5.8 observed < 3.2 expected

 μ_{VBF} < 91 observed < 71 expected

bbyy: µнн < 5.0 expected

Brian Moser

bbyy: $\mu_{VBF} < 145$ expected

ATLAS Run 2 pp \rightarrow HH \rightarrow bbtt

Constraining anomalous self couplings

Anomalous HHH coupling:

Little correlation between the two modifiers (-12%) ATLAS Run 2 pp \rightarrow HH \rightarrow bbtt Brian Moser

Anomalous HHVV coupling:

HEFT interpretation

Using the analysis to constrain 6 add. m_{HH} shape benchmarks within the HEFT framework

spectrum than SM

spectrum than SM

Brian Moser

ATLAS Run 2 pp \rightarrow HH \rightarrow bbtt

Towards Run 3

Ongoing performance improvements will benefit future analyses in this channel

Brian Moser ATLAS Run 2 pp \rightarrow HH \rightarrow bbtt

Summary and conclusion

- $pp \rightarrow HH \rightarrow bb\tau\tau$ re-analysis of the Run 2 data set with focus on non-resonant part [similar to what has already been done for $pp \rightarrow HH \rightarrow bbyy$, <u>arXiv:2310.12301</u>]
- Expected improvements of 20% on signal strength →bbtt is strongest contributor to ATLAS HH combination \rightarrow equivalent of adding a new HH analysis with a
 - limit of 5 x SM
- Improvements on HHH and HHVV coupling strengths limits of 10% - 20%
- Run 3 awaits with further improvements

Exciting times ahead!

Brian Moser

ATLAS Run 2 pp \rightarrow HH \rightarrow bbtt

Backup

