

Determination of CPV Higgs mixing angle in ZZ-fusion at 1 TeV ILC

N. Vukasinovic, <u>I. Bozovic Jelisavcic</u>, G. Kacarevic on behalf of the ILD Detector Concept Group

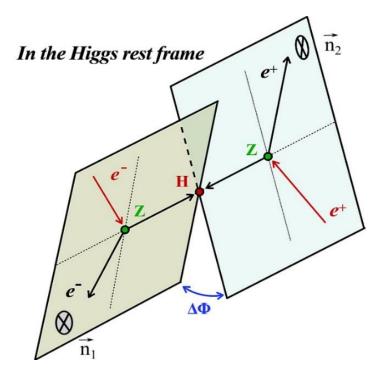
VINCA Institute of Nuclear Sciences,
Belgrade, Serbia

OPENING QUESTIONS/OUTLINE

- 1. Could 125 GeV Higgs mass eigenstate be a CPV mixture of CP-odd and CP-even states via mixing angle $\Psi_{\rm CP}$?
- 2. If so, with what precision $\Psi_{\rm CP}$ can be measured at 1 TeV ILC ?
- 3. What is the interpretation of the measurement sensitivity (in the context of Snowmass CPV White paper [arXiv:2205.07715v3])?

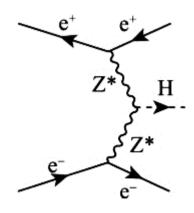
SENSITIVE OBSERVABLE

- Generic model of CPV mixing: h_{125} =H·cos Ψ_{CP} + A·sin Ψ_{CP}
- CP-sensitive observable: angle between production planes $\Delta \phi$
- As shown in [arXiv:2203.11707v3] $\Delta\Phi$ carries the most information on the Higgs CP state


$$\Delta \Phi = \begin{cases} arc \cos (\cos \Delta \Phi), & sgn(\sin \Phi \geq 0) \\ 2\pi - arc \cos (\cos \Delta \Phi), & sgn(\sin \Phi \leq 0) \end{cases}$$

$$cos \Phi = (\hat{n}_1 \cdot \hat{n}_2)$$

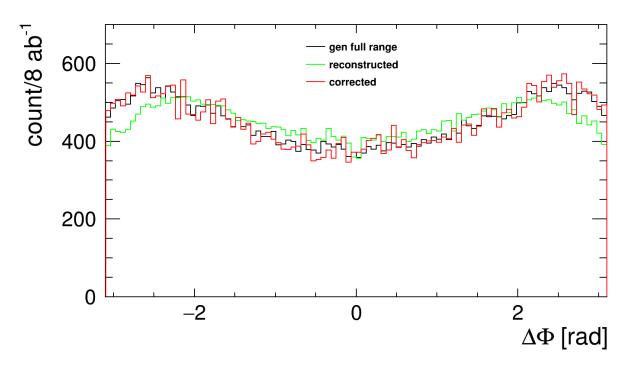
$$sgn (sin \Phi) \cdot \frac{q_1 \cdot (\hat{n}_1 \times \hat{n}_2)}{|q_1 \cdot (\hat{n}_1 \times \hat{n}_2)|}$$


$$\hat{n}_1 = \frac{q_{e_i^-} \times q_{e_f^-}}{|q_{e_i^-} \times q_{e_f^-}|}$$

$$\hat{n}_1 = \frac{q_{e_i^-} \times q_{e_f^-}}{|q_{e_i^-} \times q_{e_f^-}|} \qquad \hat{n}_2 = \frac{q_{e_i^+} \times q_{e_f^+}}{|q_{e_i^+} \times q_{e_f^+}|}$$

SIGNAL AND BACKGROUND

1 TeV	σ (fb)	Expected in 8 ab ⁻¹ full range	Reconstructed with ILD				
Signal:	42	104000	2·10 ⁵ DELPHES~36.6 ab ⁻¹				
$e^+e^- o Hee, H o b\overline{b}$	13		3495 full sim. ~0.22 ab ⁻¹				
$e^+e^- \rightarrow q\bar{q}l^+l^-$	255	2·10 ⁶	1·10 ⁶ DELPHES				
			5886 full sim.				
$e^+e^- \to q\bar{q}$	9375	75·10 ⁶	120343 full sim.				
$e^+e^- o q\bar{q}lv$	4116	32.9·10 ⁶	955058 full sim.				


~ 1 TeV energies are optimal due to interplay of x-section and centrality

	√s	beam polarisation	∫Ldt (baseline)				
ILC	0.1 - 1 TeV	e-: 80% e+: 30% (20%)	2 ab-1 @ 250 GeV 0.2 ab-1 @ 350 GeV 4 ab-1 @ 500 GeV 8 ab-1 @ 1 TeV				

- Generator level WHIZARD V2.8.3/UFO/Higgs characterization model signal and WHIZARD 1.95/SM background
- Unpolarized beams

GENERATED AND RECONSTRUCTED SIGNAL

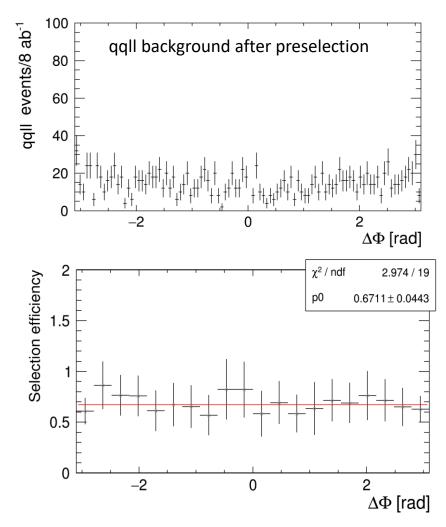
Corrected reconstructed signal for pure scalar $\Psi_{\rm CP}$ =0, **generated** information (WHIZARD) and uncorrected reconstructed signal

- Acceptance correction needed to retrieve full physical information
- Generated information is reasonably well reproduced with corrected reconstructed data

Beijing China

EVENT SELECTION

Preselection – electron isolation:

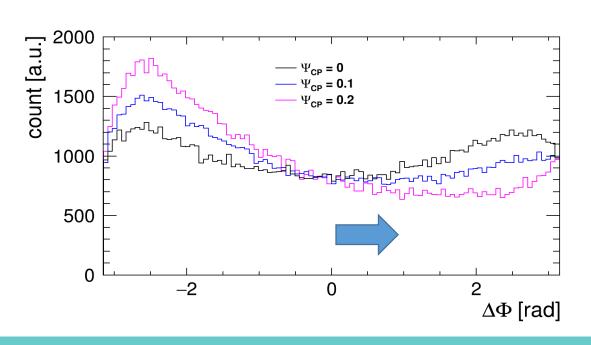

- $om_{e^+e^-} > 200 \text{ GeV} \text{ (veto HZ)}$
- \circ $E_{e^+} > 60 \text{ GeV}$
- DELPHES electron isolation
 - \circ Δ Rmax = 0.5
 - \circ p_{Tmin} = 0.5 GeV

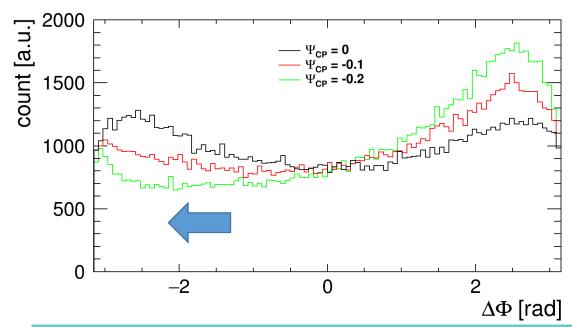
$$O I = \frac{\sum_{i \neq P}^{p_T(i) > p_T^{min}} p_T(i)}{p_T(P)} < 0.12$$

Signal preselection efficiency: ~71%

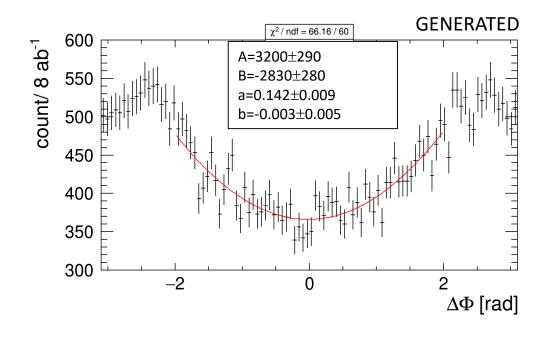
Selection cuts:

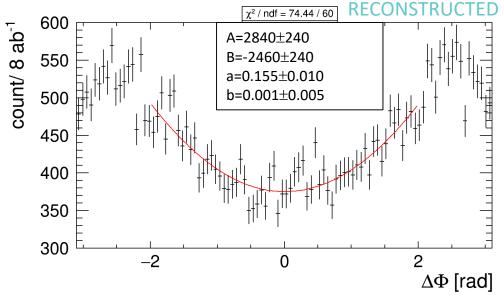
- \circ 80 GeV < $m_{q\bar{q}}$ < 160 GeV
- o $m_{Z_1,Z_2} > 30 \, GeV$
- o $p_{Tee} > 15 \, GeV$,
- Selection efficiency: 96%
- Total signal efficiency: ~ 68%




 \circ Unbiased selection w.r.t. $\Delta\Phi$ \circ Background is CP insensitive, fully suppressed (preselection efficiency <1%)

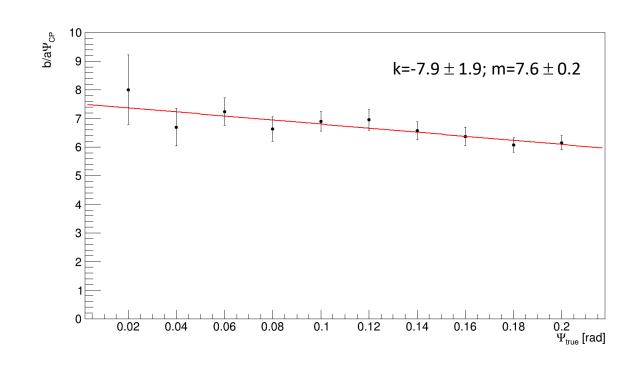
ANGULAR OBSERVABLE $\Delta\Phi$ AND MIXING ANGLE Ψ_{CP}


Minimum of $\Delta\Phi$ shifts for non-zero $\Psi_{\sf CP}$


Differently from the H $\to \tau\tau$ angular observable whose dependence on Ψ_{CP} can be derived from the differential x-section, here Ψ_{CP} has to be extracted **empirically**

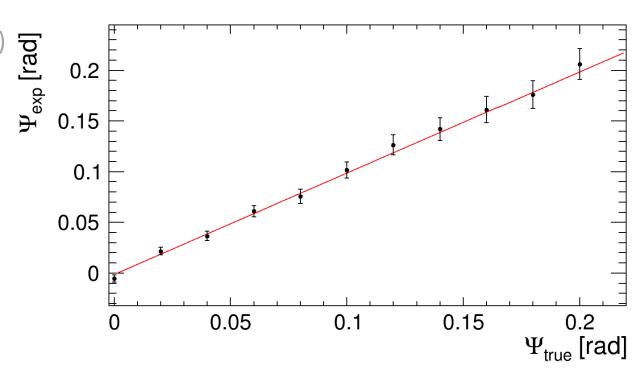
- Minimum of $\Delta\Phi$ is sensitive to Ψ_{CP} ;
- 1. Determine position of the local minimum (b/a) from experimental (pseudo) data: $f(\Delta\Phi, \Psi_{CP})=A+B\cdot\cos(a\cdot\Delta\Phi-b)$
- 2. Position (b/a)/ Ψ_{CP} is a linear function of Ψ_{CP} : $(b/a)/\Psi_{CP}=k\cdot\Psi_{CP}+m$
- 3. Determine from simulation coefficients k, m
- 4. Ψ_{CP} can be retrieved from quadratic equation: $k \cdot \Psi^2_{CP} + m \cdot \Psi_{CP} - (b/a) = 0$

- Minimum of $\Delta\Phi$ is sensitive to Ψ_{CP} ;
- Determine position of the local minimum (b/a) from experimental (pseudo) data:

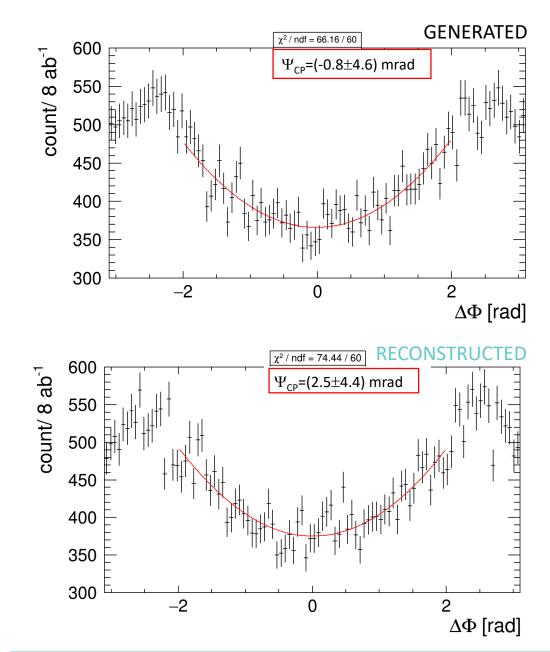

$$f(\Delta \Phi, \Psi_{CP}) = A + B \cdot \cos(\alpha \cdot \Delta \Phi - b)$$

2. Position (b/a)/ Ψ_{CP} is a linear function of Ψ_{CP} :

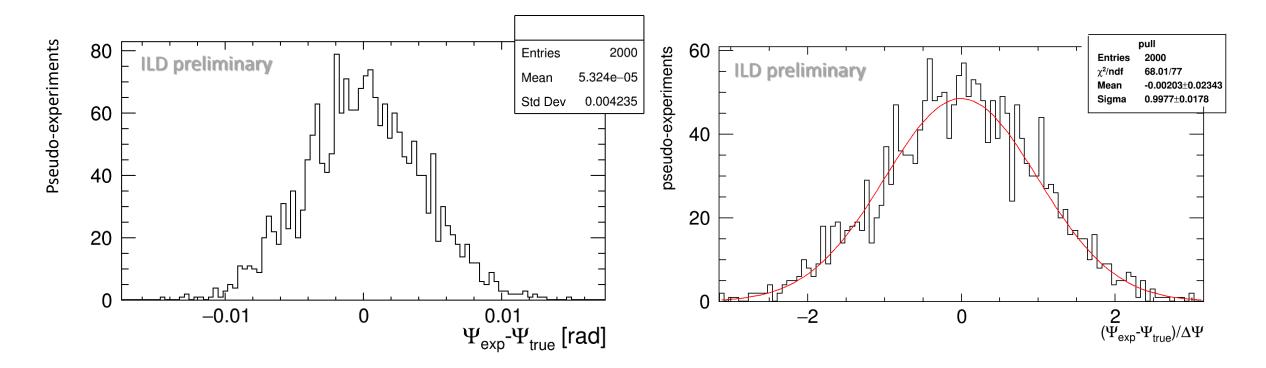
$$(b/a)/\Psi_{CP}=k\cdot\Psi_{CP}+m$$


- 3. Determine from simulation coefficients k, m
- 4. Ψ_{CP} can be retrieved from quadratic equation:

$$k \cdot \Psi^2_{CP} + m \cdot \Psi_{CP} - (b/a) = 0$$


- \checkmark Minimum of $\Delta\Phi$ is sensitive to Ψ_{CP} ;
- 1. Determine position of the local minimum (b/a) from experimental (pseudo) data: $f(\Delta\Phi, \ \Psi_{CP}) = A + B \cdot \cos(\alpha \cdot \Delta\Phi b)$
- 2. Position (b/a)/ $\Psi_{\rm CP}$ is a linear function of $\Psi_{\rm CP}$: $(b/a)/\Psi_{\rm CP}=k\cdot\Psi_{\rm CP}+m$
- 3. Determine from simulation coefficients k, m
- 4. Ψ_{CP} can be retrieved from quadratic equation:

$$k \cdot \Psi^2_{CP} + m \cdot \Psi_{CP} - (b/a) = 0$$


- Minimum of $\Delta\Phi$ is sensitive to Ψ_{CP} ;
- Determine position of the local minimum (b/a) from experimental (pseudo) data: $f(\Delta \Phi, \Psi_{CP}) = A + B \cdot \cos(\alpha \cdot \Delta \Phi - b)$
- 2. Position (b/a)/ Ψ_{CP} is a linear function of Ψ_{CP} : $(b/a)/\Psi_{CP}=k\cdot\Psi_{CP}+m$
- 3. Determine from simulation coefficients k, m
- 4. Ψ_{CP} can be retrieved from quadratic equation:

$$k \cdot \Psi^2_{CP} + m \cdot \Psi_{CP} - (b/a) = 0$$

PSEUDO-EXPERIMENTS

$$\Delta \Psi^{\text{CP}}_{\text{(stat.)}}$$
= 4 mrad

- o 2000 pseudo-experiments give 4 mrad for statistical dissipation of the mean
- o Pull distribution indicates that uncertainties are correctly estimated
- Systematic error from the fit parameters uncertainties gives ~1 mrad

INTERPRETATION

- Common framework is defined in the Snowmass CPV White paper: benchmark parameter $f_{CP} \sim sin^2(\Delta \Psi_{CP})$ quantifying relative contribution from CP-odd amplitude
- Interpretation for LHC/HL-LHC and future Higgs factories, for EFT and CP-sensitive observable based measurements

(68% CL, pure scalar)

[arXiv:2205.07715v3]

Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma \gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	350	500	1,000	1,300	125	125	3,000	(theory)
\mathcal{L} (fb ⁻¹)	300	3,000	30,000	250	350	500	1,000	1,000	250	20	1,000	
HZZ/HWW	$4.0 \cdot 10^{-5}$	$2.5 \cdot 10^{-6}$	✓	$3.9 \cdot 10^{-5}$	$2.9 \cdot 10^{-5}$	$1.3 \cdot 10^{-5}$	$3.0 \cdot 10^{-6}$	\ \ \	✓	✓	✓	$< 10^{-5}$
$H\gamma\gamma$	_	0.50	✓	_	_	_	(10 ab ⁻¹)	_	0.06	_	_	$< 10^{-2}$
$HZ\gamma$	_	~ 1	✓	_	_	_	~ 1		_	_	_	$< 10^{-2}$
Hgg	0.12	0.011	✓	_	_	_	_	_	_	_	_	$< 10^{-2}$
$Htar{t}$	0.24	0.05	✓	_	_	0.29	0.08	√	_	_	✓	$< 10^{-2}$
$H\tau\tau$	0.07	0.008	✓	0.01	0.01	0.02	0.06		✓	✓	✓	$< 10^{-2}$
$H\mu\mu$	_	_	_	_	_	_	_	_		√	_	$< 10^{-2}$

1 TeV ILC

- ✓ First measurement in VBF
- ✓ First measurement in HZZ vertex based on angular observable
- ✓ Full background simulation of ILD detector and fast simulation of the signal
- ✓ Realistic ILC running scenario

INTERPRETATION

(68% CL, pure scalar)

Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma \gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	350	500	1 TeV	1,300	125	125	3,000	(theory)
\mathcal{L} (fb ⁻¹)	300	3,000	30,000	250	350	500	8 ab ⁻¹	1,000	250	20	1,000	
HZZ/HWW	$4.0 \cdot 10^{-5}$	$2.5 \cdot 10^{-6}$	✓	$3.9 \cdot 10^{-5}$	$2.9 \cdot 10^{-5}$	$1.3 \cdot 10^{-5}$	1.6 ·10-5	√	✓	√	✓	$< 10^{-5}$
$H\gamma\gamma$	_	0.50	✓	_	_	_	_	_	0.06	_	_	$< 10^{-2}$
$HZ\gamma$	_	~ 1	\checkmark	_	_	_	~ 1	_	_	_		$< 10^{-2}$
Hgg	0.12	0.011	✓	_	_	_	_				_	$< 10^{-2}$
$Htar{t}$	0.24	0.05	✓	_	_	0.29	0.08	✓	_	_	✓	$< 10^{-2}$
H au au	0.07	0.008	✓	0.01	0.01	0.02	0.06	_	\checkmark	✓	✓	$< 10^{-2}$
$H\mu\mu$	_			_	_	_	_		_	✓	_	$< 10^{-2}$

Beijing China

SUMMARY

- Complete simulation of CPV Higgs mixing angle (Ψ_{CP}) measurement is performed at 1 TeV ILC with the ILD detector
- \checkmark This is the first result in VBF fusion based on angular observable ($\Delta\Phi$);
- Knowing the dependence of $\Delta\Phi$ minimum to Ψ_{CP} from simulation, Ψ_{CP} can be determined from (experimental) data;
- \checkmark From 8 ab⁻¹ of 1 TeV ILC data, pure scalar state should be measured with 4 mrad statistical uncertainty of Ψ_{CP} at 68% CL; Systematic uncertainty from the fit is found to be smaller (< 1 mrad);
- ✓ The above uncertainty corresponds to $f_{CP} \approx 1.6 \cdot 10^{-5}$ approaching theoretical target;
- The precision can be improved in combination with other Higgs decay channels (i.e. $H\rightarrow WW\rightarrow 4$ -jets).