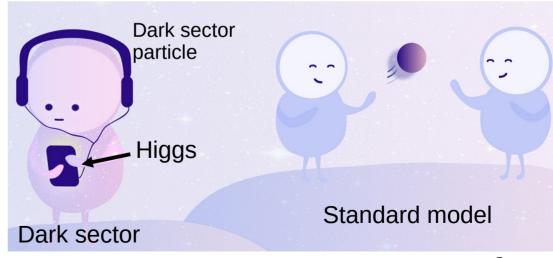


Searching for dark neutrinos through exotic Higgs decays

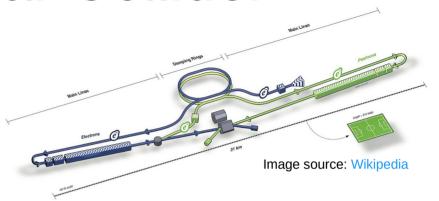

Simon Thor¹
In collaboration with Masaya Ishino², Junping Tian²

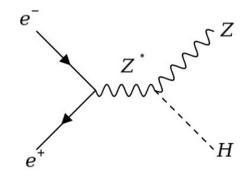
¹KTH Royal Institute of Technology, Sweden ²International Center for Elementary Particle Physics, University of Tokyo

Higgs as probe of BSM

- No signs of BSM at colliders yet
- Higgs boson least understood SM particle
 - Might be connected to BSM, e.g., a dark sector
- Precision measurements of Higgs could lead to discoveries

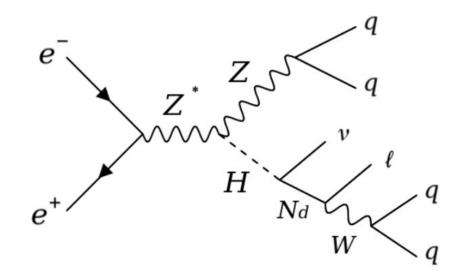
Dark neutrino model


- Dark sector model with weak-like force [arXiv:1910.08068]
- CP violation in two Higgs doublet potential


- Dark neutrinos (heavy neutral leptons) decay to SM leptons
 - Dark sector CP asymmetry transferred to SM
 - → Matter-antimatter asymmetry
- Dark neutrinos do not have to be Majorana particles
- In this study: $m_Z < m_{Nd} < m_H$

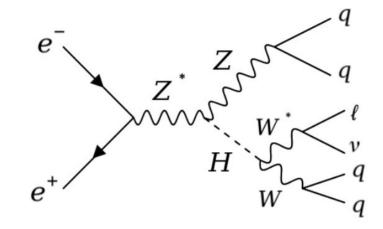
International Linear Collider

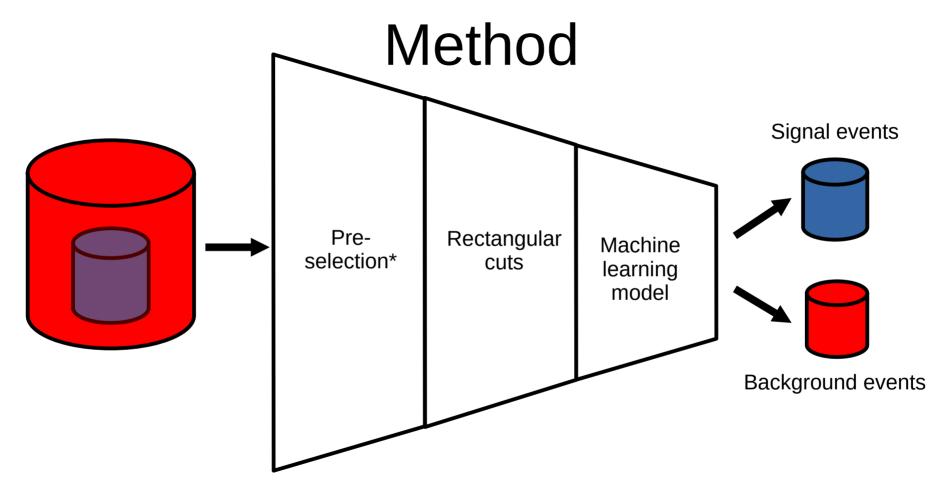
- e⁺e⁻ linear collider (precision machine)
 - Linear to reduce synchrotron radiation
- Higgs factory
- $\sqrt{s} = 250 \text{ GeV}$
 - later 350, 500 GeV
- Beam polarizations: (-0.8, +0.3) and (+0.8, -0.3)
 - +minority of (-0.8, -0.3), (+0.8, +0.3)
- Integrated luminosity: 2000 fb⁻¹
 - HL-LHC: ~4000 fb⁻¹



Signal characteristics

- Focus on hadronic decay mode
- Only electron, muon channels


- 4 jets
- 1 isolated lepton
- Missing 4-momentum


Free parameters: dark neutrino mass, BR(H $\rightarrow \nu N_D$)BR(N $_D \rightarrow IW$)

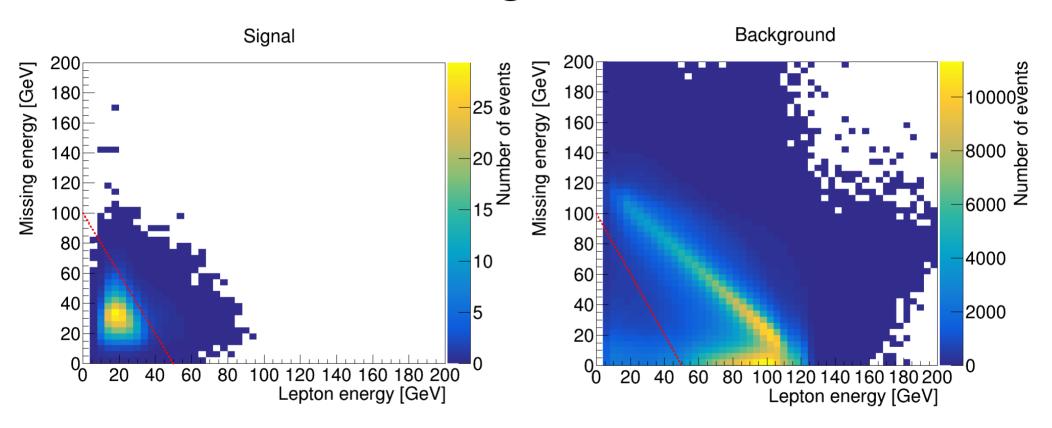
Backgrounds

- Dominant background:
 - Same final state as signal
 - Also includes a W boson

- Other backgrounds:
 - 4 fermion hadronic: leptons from jets can be hard to distinguish from real isolated leptons
 - 4 fermion semileptonic: can be difficult to distinguish between two jets and four jets

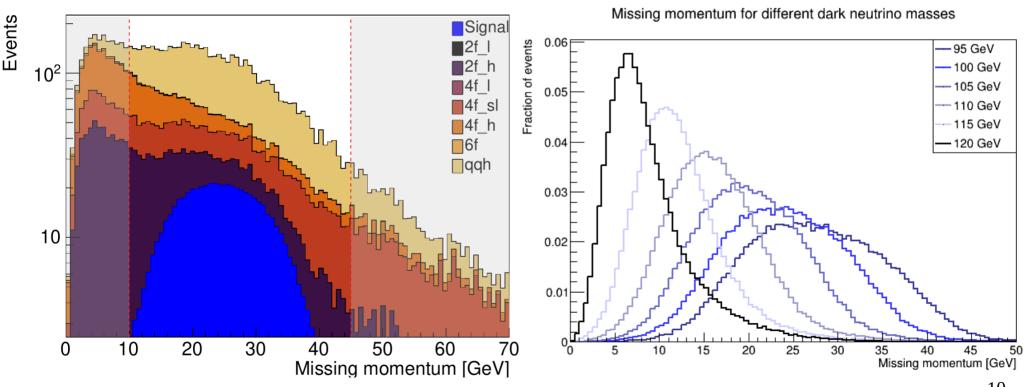
^{*}Require at least one isolated lepton (neural network)

Cluster remaining particles to 4 jets with Durham clustering


Dataset

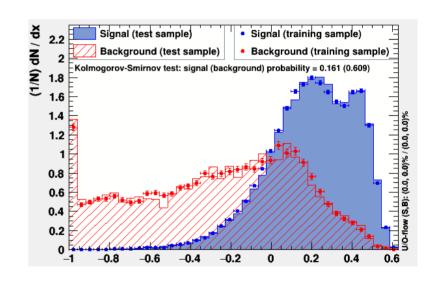
- Full detector (ILD) simulations
- 1000 fb⁻¹ each of beam polarization (-0.8, +0.3), (+0.8, -0.3)
 - A likely scenario in actual run
- $\sqrt{s} = 250 \text{ GeV}$

Signal event simulation


- $m_{ND} = 95, 100, 105, 110, 115, 120 \text{ GeV}$
- ~200 000 events per mass per beam polarization

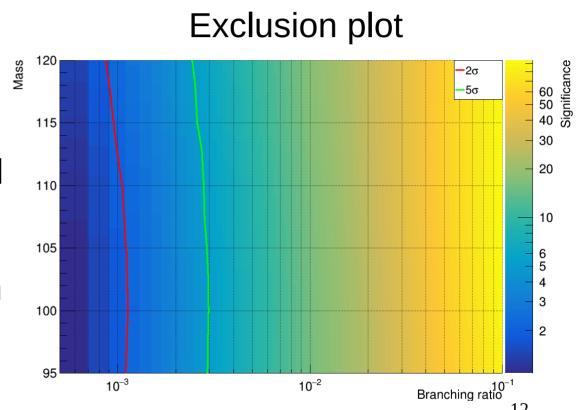
Rectangular cuts

Missing momentum distributions

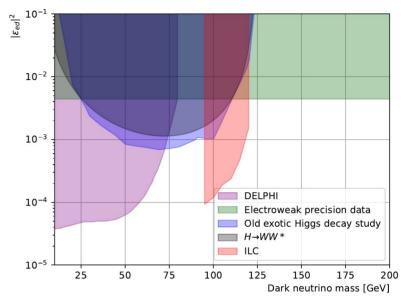

Differs significantly for different dark neutrino masses

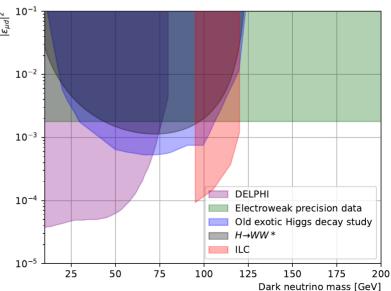
10

Machine learning

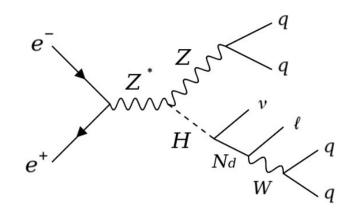

- Separate BDT for each mass, beam polarization
- Confirm that BDT is not overtrained
- Find optimal BDT cut value for each branching ratio to maximize significance

• Input parameters: recontructed W, Z, Higgs, dark neutrino mass etc.


Total significance


- Background reduced by factor of ~200 000
- ~20% of signal left
- Separate into μ, e channel
- Combined significance of beam polarizations, lepton channels

Exclusion


- Interpret results for dark neutrino model
- Exclusion improved by factor of 10 (possibly more)
- By some estimates, branching ratio measurements could be 25x better than HL-LHC!

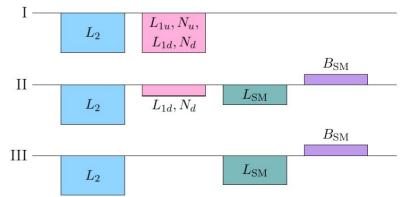
Summary

- Study heavy dark neutrino model
 - $m_Z < m_{ND} < m_H$
- First ever full detector simulation
 - 250 GeV, 2 beam polarizations
- Rectangular cuts + machine learning
- Constrain BR(H \rightarrow vN_D)BR(N_D \rightarrow IW) > 0.1% at 2 σ
- Factor of 10 (maybe even 25x) improvement
- ILC allows for high precision measurements!
- Preprint available: 2309.11254

Particles in dark sector

- Two Higgs doublets
- Higgs potential:

$$\begin{split} V(\Phi) &= \mu_1^2 \Phi_1^{\dagger} \Phi_1 + \mu_2^2 \Phi_2^{\dagger} \Phi_2 - \mu_3^2 (\Phi_1^{\dagger} \Phi_2 + c.c.) \\ &+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \left[\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \lambda_6 (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) + \lambda_7 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_2) + c.c. \right]. \end{split}$$


- $\lambda_{5,6,7}$ are complex (CP violation)
- Left-handed L_{1u}, L_{1d} with charge Q₁

field	$SU(2)_D$	γ_5	Q_1	Q_2	\mathbb{Z}_2
$\Phi_{1,2}$	2	0	0	0	+
L_1	2	-1	+1	0	+
$N_{u,d}$	1	+1	+1	0	+
L_2	2	-1	0	+1	_

- Right-handed N_u, N_d (dark neutrinos) with charge Q₁
- L₂: massless particle with charge Q₂
 - Exists to counteract Witten's anomaly but not important

Early universe

- I. Dark first-order phase transition in early universe
 - More particles than antiparticles in dark sector
- II.N_u decays to SM leptons
 - Q₁ asymmetry converted to SM lepton asymmetry
 - Some leptons converted to baryons through SM sphaleron
- III.After EW symmetry breaking, Nd decays to SM leptons
 - → additional lepton asymmetry

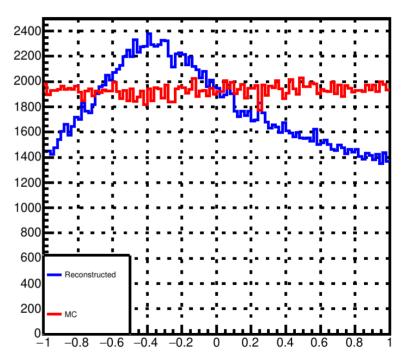
Techincal details

- Use ROOT::RDataFrame in Jupyter notebook Simplifies:
 - Making and analyzing cuts
 - Defining new variables
 - Running the code in parallel → performance boost
 - Visualize the filtered data
 - Exploratory data analysis

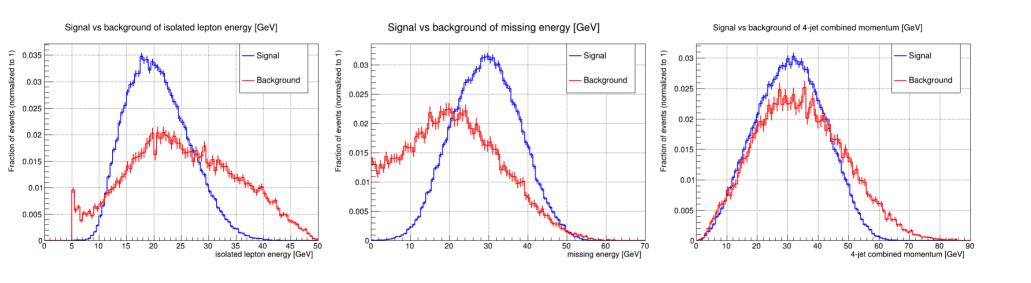
```
ROOT::RDataFrame df("myTree", file);
auto h = df.Filter("y > 2").Histo1D("x");
h->Draw()
```

Rectangular cuts

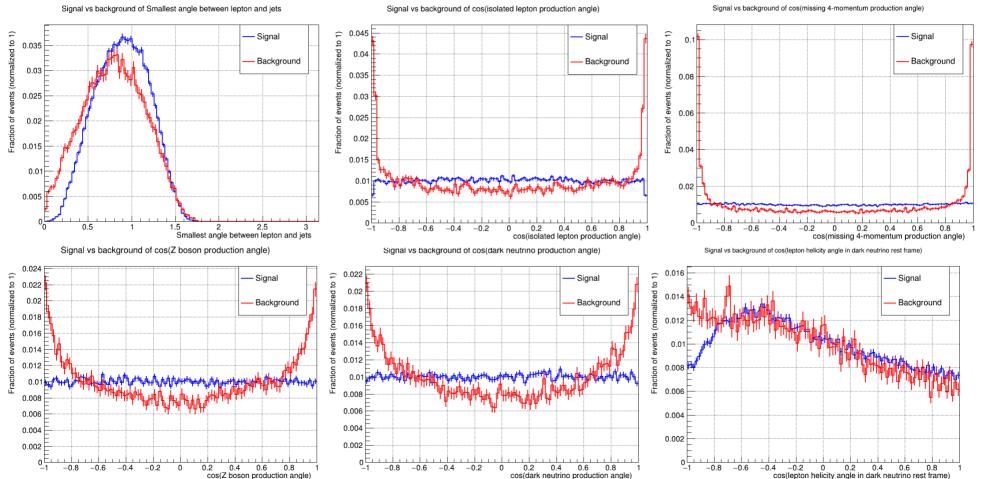
Optimize cuts separately for each beam polarization, mass

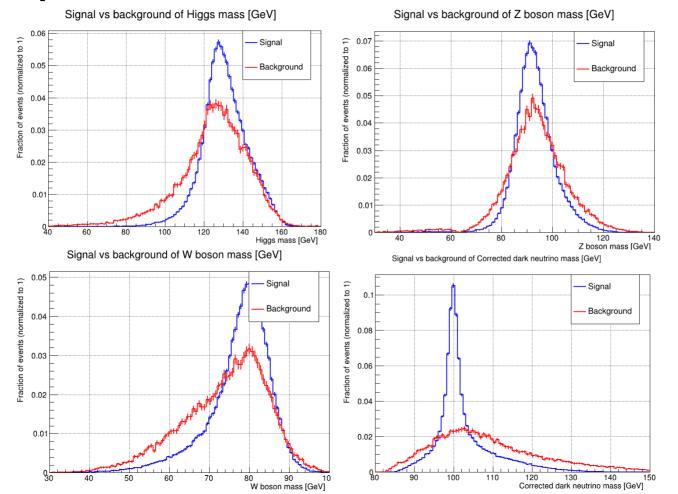

Example (m=100 GeV, (+0.8, -0.3) beam polarization)

- (Lepton energy)/50 + (missing energy)/100 < 1
- Isolated lepton finder output > 0.6
- 160 GeV < 4-jet invariant mass < 220 GeV
- Durham jet distance $y_{4\rightarrow3} > 0.004$ (if jets are more likely from 4 or 3 quarks)
- At least 4 particles in each jet $y_{4 o 3} = \min_{i,j} \left\{ \frac{2 \min\{E_i, E_j\}^2 (1 \cos(\theta_{ij})}{E_{vis}^2} \right\}$
- 10 GeV < Missing momentum < 45 GeV


Potential improvements

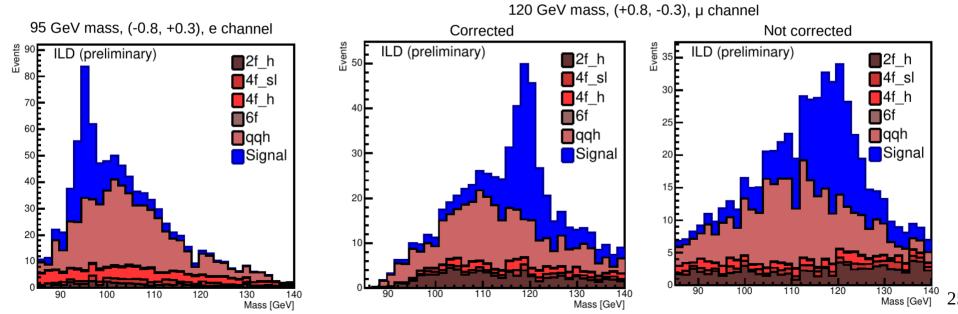
- Lepton helicity angle in dark neutrino rest frame is incorrectly reconstructed
- Slight increase of negative angles
- Caused by error in jet clustering
 - W and Z jets are mixed
- Improved jet clustering algorithms crucial for future collider experiments


cos(lepton angle in dark neutrino rest frame) | 110 GeV | eR.pL


BDT parameter distributions - energies

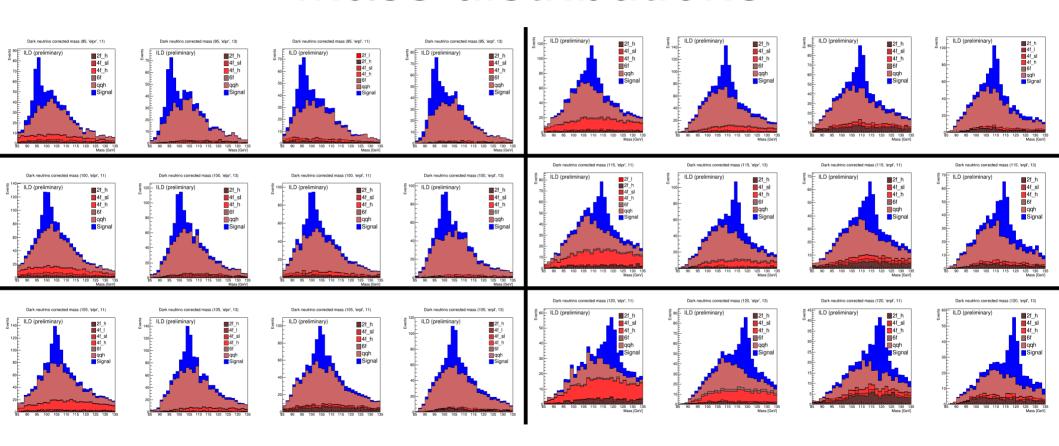
BDT parameter distributions - angles

BDT parameter distributions - masses

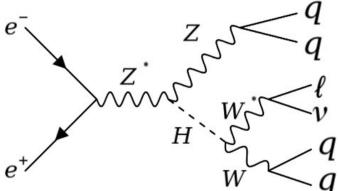


Example cut table for dark neutrino

		Total signal	Total background	Significance	2f_I	2f_h	4f_I	4f_sl	4f_h	6f	qqh
	No cuts	1396	136859842	0.12	12982897	77324421	10379315	19163106	16800470	1278	208355
	Pre-selection	1233	30132034	0.22	7366002	1606336	7651845	13260215	220833	872	25932
1% branching ratio	leptype == 11	627	14973089	0.16	1184642	1402269	4919234	7252824	198385	514	15221
100 GeV	elep/50. + emis/100. < 1	580	1136651	0.54	44637	248305	504438	192462	139969	415	6425
100 GeV	0.8 < mvalep	482	557011	0.65	28048	36926	348278	123436	16772	335	3217
(-0.8, +0.3)	(180. < mvis) && (mvis < 225.)	438	235510	0.90	13427	17309	126473	67151	8377	220	2553
Electron channel	0.007 < y34	376	19834	2.65	79	1762	298	9504	5855	200	2136
	3 < min_n	357	10234	3.47	0	920	1	1726	5458	171	1957
	(15. < mis.P()) && (mis.P() < 45.)	325	3498	5.26	0	256	0	671	1131	30	1410
	MVA cut	242	825	7.41	0	56	0	59	146	13	552
		Total signal	Total background	Significance	2f_	l 2f_h	1 4f_l	4f_sl	4f_h	6f	qqh
	No cuts	Total signal 941	Total background 66651497	Significance				_		6f 260	qqh 140405
1% branching ratio	No cuts Pre-selection	_	-	-	10314870	0 45672588	6114301	2839022			
1% branching ratio		941	66651497	0.12	10314870 569674	0 45672588 8 979693	6114301 3 4109167	2839022 1739683	1570051 22431	260	140405
1% branching ratio 120 GeV	Pre-selection	941 891	66651497 12565351	0.12 0.25	10314876 5696746 4803207	0 45672588 8 979693 7 116849	3 6114301 3 4109167 976723	2839022 1739683 542562	1570051 22431	260 194	140405 17434
-	Pre-selection leptype == 13	941 891 448	66651497 12565351 6449265	0.12 0.25 0.18	10314870 5696746 480320 7996	0 45672588 8 979693 7 116849 1 30687	3 6114301 3 4109167 9 976723 7 461188	2839022 1739683 542562 32974	1570051 22431 2613	260 194 45	140405 17434 7267 3172
120 GeV (+0.8, -0.3)	Pre-selection leptype == 13 elep/70. + emis/90. < 1	941 891 448 434	66651497 12565351 6449265 609993	0.12 0.25 0.18 0.56	10314870 5696744 480320 7996 74804	979693 7 116849 1 30687 4 19446	3 6114301 3 4109167 9 976723 7 461188 5 433438	2839022 1739683 542562 32974 29481	1570051 22431 2613 1971 1301	260 194 45 40	140405 17434 7267 3172 2956
120 GeV	Pre-selection leptype == 13 elep/70. + emis/90. < 1 0.6 < mvalep	941 891 448 434 431	66651497 12565351 6449265 609993 561464	0.12 0.25 0.18 0.56	10314870 5696746 480320 7996 74804 60238	979693 7 116849 1 30687 4 19446 9 16091	3 6114301 3 4109167 9 976723 7 461188 5 433438 1 186398	2839022 1739683 542562 32974 29481 24018	1570051 22431 2613 1971 1301	260 194 45 40 39	140405 17434 7267
120 GeV (+0.8, -0.3)	Pre-selection leptype == 13 elep/70. + emis/90. < 1 0.6 < mvalep (160. < mvis) && (mvis < 220.)	941 891 448 434 431 406	66651497 12565351 6449265 609993 561464 290455	0.12 0.25 0.18 0.56 0.57	10314870 5696744 480320 7996 74804 6 60233	979693 7 116849 1 30687 4 19446 9 16091	3 6114301 3 4109167 9 976723 7 461188 5 433438 1 186398	2839022 1739683 542562 32974 29481 24018 9535	1570051 22431 2613 1971 1301 1049 900	260 194 45 40 39 23	140405 17434 7267 3172 2956 2636 2380
120 GeV (+0.8, -0.3)	Pre-selection leptype == 13 elep/70. + emis/90. < 1 0.6 < mvalep (160. < mvis) && (mvis < 220.) 0.004 < y34	941 891 448 434 431 406 381	66651497 12565351 6449265 609993 561464 290455 16966	0.12 0.25 0.18 0.56 0.57 0.75	10314870 5696744 480320 7996 74804 60239 433	9 16091 2 2630	3 6114301 3 4109167 9 976723 7 461188 5 433438 1 186398 0 1067	2839022 7 1739683 5 542562 8 32974 9 29481 9 24018 9 9535 7 742	1570051 22431 2613 1971 1301 1049 900 693	260 194 45 40 39 23 22	140405 17434 7267 3172 2956 2636


Mass distributions

- Corrected mass: m_{ND} − m_W + m_{Wo}
- W boson jet momentum error dominant for dark neutrino reconstruction → error removed in correction

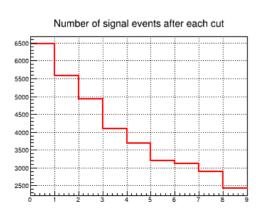

^{*}Dark neutrino mass not used as input to MVA

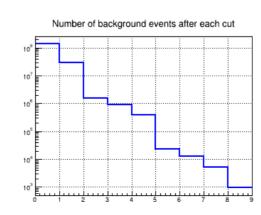
Mass distributions

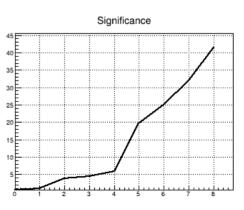
Side outcome: H→WW*

- H → WW* → qq Iv dominant background
- H → WW* interesting to study on its own
 - Key to Higgs total width

- Only investigate H → WW* → qq Iv decay channel
- Same workflow as dark neutrino analysis
- Dark neutrino-related input parameters to BDT are removed
- No lepton channel separation (yet)

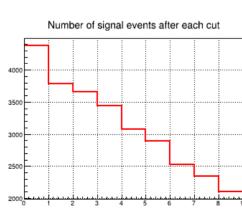

Significance - H → WW*

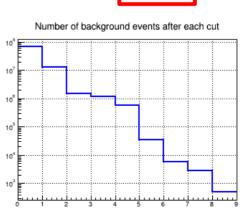

- Combined significance: 58σ
- Previous study of same decay channel at ILC (H. Ono): 36σ
 - Both W* → Iv and W* → qq were used

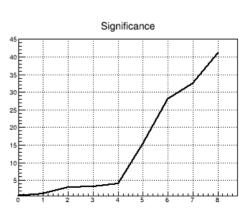

- Previous study of H \rightarrow WW* significance, with all decay modes: 61σ
- Major improvement of significance compared to previous studies at ILC

Cut table | (-0.8, +0.3) beam

	Total signal	Total background	Significance	2f_l	2f_h	4f_l	4f_sl	4f_h	6f
No cuts	6472	136651487	0.55	12982897	77324421	10379315	19163106	16800470	1278
Pre-selection	5583	30106102	1.02	7366002	1606336	7651845	13260215	220833	872
elep/50. + emis/90. < 1.	4930	1556237	3.95	75113	265900	857303	209602	147613	705
0.8 < mvalep	4101	877321	4.37	54525	41290	623639	138607	18676	585
(180. < mvis) && (mvis < 225.)	3695	386614	5.91	34476	21865	237881	82092	9918	383
0.007 < y34	3201	23318	19.66	160	2109	406	13519	6778	346
2 < min_n	3126	12464	25.04	4	1223	7	4376	6541	314
(10. < mis.P()) && (mis.P() < 50.)	2896	5327	31.93	2	564	4	2207	2449	102
MVA cut	2420	981	41.50	1	73	2	570	304	31







Cut table | (+0.8, -0.3) beam

	Total signal	Total background	Significance	2f_l	2f_h	4f_l	4f_sl	4f_h	6f
No cuts	4376	66511092	0.54	10314870	45672588	6114301	2839022	1570051	260
Pre-selection	3778	12547917	1.07	5696748	979693	4109167	1739683	22431	194
elep/60. + emis/100. < 1.	3661	1518141	2.97	99987	189804	1016886	193442	17855	167
0.6 < mvalep	3435	1206227	3.12	88826	62401	890288	159199	5357	156
(160. < mvis) && (mvis < 220.)	3071	559413	4.10	63936	33233	359843	99486	2819	96
0.004 < y34	2896	33799	15.12	565	6575	2378	21820	2369	93
4 < min_n	2527	5638	27.97	0	1775	0	1881	1910	71
(10. < mis.P()) && (mis.P() < 50.)	2344	2852	32.52	0	879	0	1049	902	23
MVA cut	2100	510	41.11	0	94	0	245	162	9

