First Measurement of the Higgs Boson Production Cross-Section in the H \rightarrow ZZ* \rightarrow 4ℓ Channel at \sqrt{s} = 13.6TeV using the ATLAS Run-3 Data

Xinmeng Ye

On behalf of the ATLAS collaboration -

Nov 29, Higgs 2023

Run: 439798 Event: 2690382975 2022-11-15 01:22:07 CEST

Run-3 H→2e2µ @ 13.6 TeV

Introduction: ATLAS operation in Run-3

- Phase-I upgrade (2019-2022)
 - Muon spectrometers: New Small Wheel, BIS RPC
 - LAr calorimeter: front-end electronics
 - TDAQ

- Successful start of the Run-3 in 2022 with new *pp* energy at 13.6 TeV
- Quick measurements using early Run3 data are necessary
 - to validate the detector performance for basic objects
 - to test the Standard Model predictions under an unprecedented centre-of-mass energy

same primary vertex

• Benefit from the clean final states with high mass resolution and signal significance $(N_{sig}/N_{bkg} \sim 2)$ despite the small branching ratio

• Final states characterized by two pairs of Same-Flavor Opposite-Charged leptons (4μ , 4e, $2e2\mu$, $2\mu 2e$) from the

- Experienced in Run-2 H \rightarrow 4 ℓ studies
 - Latest Higgs combination [Nature 607, 52 (2022)]
 - $H \rightarrow 4\ell$ differential cross section [EPJC 80 (2020) 941]

Early Run-3 $H \rightarrow ZZ^* \rightarrow 4\ell$ analysis

• H $\rightarrow\gamma\gamma$ and H $\rightarrow4\ell$ combined differential cross section [JHEP 05 (2023) 028]

$H \rightarrow ZZ^* \rightarrow 4\ell$ analysis strategy in a nutshell

- Utilize ATLAS full 2022 Run-3 dataset corresponding to an integrated luminosity of 29.0 fb⁻¹
 - First measurement of Higgs cross-section @ 13.6 TeV
- Lowest un-prescaled triggers with p_T threshold down to 6/7 GeV for e/μ
- Build the Higgs candidate from 2 SFOC lepton pairs with $105 \text{GeV} < m_{4\ell} < 160 \text{GeV}$
 - **On-shell** Z boson: $50 \text{GeV} < m_{12} < 106 \text{GeV}$
 - **Off-shell** Z boson: $12 \text{GeV} < m_{34} < 115 \text{GeV}$
- Fiducial cross-sections extracted by a binned fit processed on the reconstructed 4-lepton invariant mass spectrum $m_{4\ell}$
- Paper published on EPJC [CERN-EP-2023-114]

Irreducible background - 4 prompt lepton in the final states

- non-resonant ZZ*
 - Simultaneous extraction of the normalization factor via fit to the $m_{4\ell}$ sidebands [105,115] + [130,160] GeV
- $t\bar{t}+\ell\ell$ & VVV
 - Estimated from MC due to small cross-sections

Reducible background - 2 prompt leptons (Z or $t\bar{t}$) + 2 reco. leptons from heavy-flavour decays / fakes / photon conversion

- Study background in dedicated CRs orthogonal to SR defined by inverting/relaxing event selection criteria
- Expected background yields in the SR extrapolated from CRs via transfer factors

Fiducial cross-section fit

2023/11/29

- The fiducial phase space is defined at particle-level closely following the definition of detector-level event reconstruction
- Fiducial cross-section σ_{fid} extracted inclusive for all final states (4 μ , 4e, 2e2 μ , 2 μ 2e) using a binned fit of the m_{4l} distribution $P_i(m_{4l})$ to the number of observed events

$$N(m_{4l}) = \mathcal{L}\sum_{i} \epsilon_{i} (1 + f_{i}^{\text{nonfid}}) \sigma_{i}^{\text{fid}} P_{i}(m_{4l}) + N^{\text{bkg}}(m_{4l}) \qquad i = 4\mu, \, 4e, \, 2e2\mu, \, 2\mu 2e$$

Parameter of Interest: $\sigma_i^{\text{fid}} = \sigma_i \cdot A_i \cdot BR_i$ m_{4l} signal shape: $P_i(m_{4l})$ Acceptance: $A_i = N_{\text{fid}}/N_{\text{tot}} \sim 50\%$ Reconstruction efficiency: $\epsilon_i = N_{\text{reco}}/N_{\text{fid}} \sim 25\%$ -50% Fiducial leakage: $f_i^{\text{nonfid}} = (N_{\text{reco}} - N_{\text{reco&fid}})/N_{\text{reco}} \sim 1\%$

fraction of events outside the fiducial region but are reconstructed in the SR

Fiducial Phase Space

Fiducial cross-section results

• Observed number of events compared to the expected signal and background yields for each of the 4 μ , 4e, 2e2 μ , 2 μ 2e channels in the SR (115GeV < $m_{4\ell}$ < 130GeV)

					+************	
Final state	Signal SM (pre-fit)	Signal (post-fit)	ZZ* background	Other backgrounds	Total	Observed
4μ	14.8 ± 1.0	11.3 ± 0.8	8.3 ± 0.6	1.0 ± 0.3	20.6 ± 1.0	23
$2e2\mu$	11.1 ± 0.8	8.5 ± 0.6	6.5 ± 0.4	1.0 ± 0.3	16.0 ± 0.8	13
$2\mu 2e$	7.0 ± 1.3	5.4 ± 1.0	3.2 ± 0.6	0.9 ± 0.1	9.4 ± 1.2	12
4e	7.4 ± 1.5	5.7 ± 1.1	3.1 ± 0.7	0.8 ± 0.2	9.6 ± 1.4	9
Total	40.3 ± 3.8	30.9 ± 2.9	21.1 ± 2.0	3.6 ± 0.7	55.6 ± 4.4	57
					**************	************

• Fiducial cross-section results:

observed $\sigma_{\rm fid}$ = 2.80 \pm 0.70 (stat.) \pm 0.21 (syst.) fbexpected $\sigma_{\rm fid.SM}$ = 3.67 \pm 0.19 fb

The agreement with SM prediction

Uncertainties

- Source of systematics
 - **Experimental** (e/µ performance, pile-up reweight, luminosity)
 - **Theory** (signal/background modelling)
 - **Other** (reducible backgrounds estimation)
- Uncertainties dominated by statistics
- Significantly larger e/ μ uncertainties compared to Run-2 (139 fb⁻¹) H \rightarrow 4 ℓ analysis
 - Largest impact from the electron identification efficiency conservative uncertainty from extrapolation of Run-2 identification / reconstruction calibrations to Run-3 data

Source	Uncertainty [%]	
Statistical uncertainty	25.1	
Systematic uncertainty	7.9	
Electron uncertainties	6.3	
Muon uncertainties	3.8	
Luminosity	2.2	
ZZ^* theoretical uncertainties	0.7	
Reducible background estimation	0.6	
Other uncertainties	<1.0	
Total	26.4	

Source	Uncertainty [%]	
Stat.	9	
Syst.	3	
Lumi.	1.7	
e/μ	2	
Jets	<0.5	
Other	< 0.5	
ZZ* Th.	1	
Sig. Th.	1.5	
Comp.	<0.5	

This

analysis

From Run-2 H→4ℓ paper [EPJC 80 (2020) 941]

Total cross-section combination

- The H \rightarrow ZZ* \rightarrow 4 ℓ inclusive fiducial cross-section is extrapolated to total phase space and combined with H $\rightarrow\gamma\gamma$ to get the total cross-section for $pp \rightarrow H$
 - $\sigma(pp \rightarrow H) = 46 \pm 12 \text{ pb}$ • $H \rightarrow ZZ^* \rightarrow 4\ell$ [this analysis]:
 - H $\rightarrow \gamma \gamma$ [ATLAS-CONF-2023-003]: $\sigma(pp \rightarrow H) = 67^{+12}_{-11} \text{ pb}$
- Combined total cross-section
 - observed

 $\sigma(pp \rightarrow H) = 58.2 \pm 8.7 \text{ pb}$ $= 58.2 \pm 7.5$ (stat.) ± 4.5 (syst.) pb

• expected

 $\sigma_{\rm SM}(pp \rightarrow H) = 59.9 \pm 2.6 \text{ pb}$

CAll 3 results in agreement with SM prediction

compatible with a p-value of 20%

Xinmeng Ye - Higgs 2023

Summary

• First measurement of the Higgs boson cross-section at $\sqrt{s} = 13.6$ TeV has been performed in the H \rightarrow ZZ* \rightarrow 4 ℓ and H $\rightarrow\gamma\gamma$ channels at ATLAS [CERN-EP-2023-114]

 $σ(pp→H) = 58.2 \pm 8.7 \text{ pb} = 58.2 \pm 7.5 \text{ (stat.)} \pm 4.5 \text{ (syst.) pb}$ (obs.) $σ_{SM}(pp→H) = 59.9 \pm 2.6 \text{ pb}$ (exp.)

- Analysis largely constrained by the limited statistics another 29.9 fb⁻¹ of data recorded during 2023!
- Run-3 H→4ℓ differential cross-sections and coupling measurements become feasible with improved sensitivity
 - Expect improvement in the calibration of electron and muon using dedicated Run-3 campaigns

Thanks to Siyuan Yan for the illustration!

BACKUPS

MC samples

- ggZZ background sample unavailable at the time of the analysis
- qq & ggZZ summed together in fit: currently rescaling qqZZ to emulate inclusion of ggZZ
 - Re-weight factor derived from run 2 samples \rightarrow qqZZ scaled by 1 + $\frac{N(ggZZ, 13 \text{ TeV})}{N(gqZZ, 13 \text{ TeV})}$
 - Impact on fiducial cross-section of including ggZZ: < 0.3%

Process Generator		Showering	PDF set	σ [pb] $\sqrt{s} = 13.6$ TeV
ggF + $b\bar{b}H$	Powheg Box v2 + MiNLO	Рутніа 8.2/8.3	PDF4LHC21	52.7 ± 2.6
VBF	Powheg Box v2	Рутніа 8.2/8.3	PDF4LHC21	$4.075_{-0.089}^{+0.088}$
WH	Powheg Box v2 + MINLO	Рутніа 8.2/8.3	PDF4LHC21	$1.453^{+0.029}_{-0.028}$
$q\bar{q} \rightarrow ZH$	Powheg Box v2 + MiNLO	Рутніа 8.2/8.3	PDF4LHC21	$0.806^{+0.033}_{-0.029}$
$gg \rightarrow ZH$	Powheg Box v2	Рутніа 8.2/8.3	PDF4LHC21	$0.136^{+0.034}_{-0.026}$
tĪH	Powheg Box v2	Рутніа 8.2/8.3	PDF4LHC21	$0.569^{+0.040}_{-0.057}$
$\gamma\gamma, m_{\gamma\gamma} \in 90-175 \text{ GeV}$	MadGraph5_aMC@NLO	Рутніа 8.2	NNPDF3.0 NLO	-
$qq \rightarrow ZZ^*$	Sherpa 2.2.12	Sherpa	NNPDF3.0 NNLO	-
VV, VVV	Sherpa 2.2.12	Sherpa	NNPDF3.0 NNLO	-
Z + jets	Sherpa 2.2.12	Sherpa	NNPDF3.0 NLO	-
tī	Powheg Box v2	Рутніа 8.3	NNPDF3.0 NLO	-
$t\bar{t}W, t\bar{t}Z$	Sherpa 2.2.12	Sherpa 2.2.12	NNPDF3.0 NNLO	-

Object definition & event selection

Object definition

- Electrons:
 - $E_T > 7$ GeV, $|\eta| < 2.47$
 - ID: Loose+B-Layer
 - Iso: Loose VarRad
- Muons:
 - $p_T > 5 \text{ GeV}, |\eta| < 2.5$
 - ID: Loose
 - ISO: PFlowLoose VarRad
- TTVA:
 - $|d_0| < 1mm, \, d_0/\sigma(d_0) < 5/3$ for e/μ
 - $|z_0 \sin \theta| < 0.5 \text{ mm}$
- FSR recovery
 - consider photons within $|\eta| < 2.5$
 - collinear FSR (μ only): $p_T > 1$ GeV, $\Delta R(\ell, \gamma) < 0.15$
 - non-collinear FSR: tight photons, $p_T > 10 \text{ GeV}$

Event selection

Leptons				
Muons	$p_{\rm T} > 5$ GeV, $ \eta < 2.5$			
Electrons	$E_{\rm T} > 7 {\rm GeV}, \eta < 2.47$			
Lepton selection and pairing				
Lepton kinematics	$p_{\rm T} > 20, 15, 10 {\rm GeV}$			
Leading pair (m_{12})	SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $			
Subleading pair (m_{34})	remaining SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $			
Event selection (at most one Higgs boson candidate per channel)				
Mass requirements	50 GeV < m_{12} < 106 GeV and $m_{\text{threshold}}$ < m_{34} < 115 GeV			
Lepton separation	$\Delta R(\ell_i, \ell_j) > 0.1$			
J/ψ veto	$m(\ell_i, \ell_j) > 5$ GeV for all SFOC lepton pairs			
Impact parameter	$ d_0 /\sigma(d_0) < 5$ (3) for electrons (muons)			
Mass window	105 GeV < $m_{4\ell}$ < 160 GeV			
Vertex selection	$\chi^2/N_{\rm dof} < 6$ (9) for 4 μ (other channels)			
If extra lepton with $p_{\rm T} > 12$ GeV	quadruplet with largest ME value			

- m_{34} dynamic cut: $m_{threshold} < m_{34} < 115 GeV$
 - $m_{threshold}$ is 12 GeV for $m_{4\ell}$ < 140 GeV, and rises linearly to 50 GeV for $m_{4\ell}$ = 190 GeV
- ME value calculated with MadGraph at LO

Fiducial phase-space & fiducial factors

• Number of Monte Carlo signal events ATLAS Simulation ATLAS Simulation - 25 $H \rightarrow ZZ^* \rightarrow 2\mu 2e$ (normalised to the SM prediction) selected $H \rightarrow ZZ^* \rightarrow 4\mu$ - 25 \sqrt{s} =13.6 TeV. 29.0 fb⁻¹ \sqrt{s} =13.6 TeV. 29.0 fb⁻¹ Passed Passed or rejected by the selections applies at - 20 12.8 15.1 7.27 particle-level particle-level selection selection 20 • reconstruction level (x-axis) 15 • particle (fiducial) level (y-axis) Failed Failed 28.5 26.2 < 0.1 particle-level < 0.1 particle-level selection selection • Shown for each four-lepton final state Failed reconst.-level Passed reconst.-level Failed reconst.-level Passed reconst.-level selection selection selection selection ATLAS Simulation ATLAS Simulation - 25 Fiducial phase space $H \rightarrow ZZ^* \rightarrow 2e2u$ - 25 \sqrt{s} =13.6 TeV, 29.0 fb⁻¹ \sqrt{s} =13.6 TeV, 29.0 fb⁻¹ Passed Passed Leptons - 20 20.7 7.27 particle-level 13.4 11.5 particle-level $p_{\rm T} > 5$ GeV, $|\eta| < 2.7$ Leptons selection selection 20 Lepton selection and pairing Lepton kinematics $p_{\rm T} > 20, 15, 10 {\rm GeV}$ 15 Leading pair (m_{12}) SFOC lepton pair with smallest $|m_Z - m_{\ell\ell}|$ remaining SFOC lepton pair with smallest $|m_Z - m_{\ell\ell}|$ Subleading pair (m_{34}) Event selection (at most one quadruplet per event) 10 10 Mass requirements 50 GeV < m_{12} < 106 GeV and 12 GeV < m_{34} < 115 GeV Failed Failed 28.4 26.2 < 0.1 particle-level < 0.1 particle-level Lepton separation $\Delta R(\ell_i, \ell_i) > 0.1$ selection selection $m(\ell_i, \ell_i) > 5$ GeV for all SFOC lepton pairs J/ψ veto Mass window 105 GeV < $m_{4\ell}$ < 160 GeV quadruplet with largest matrix element value If extra lepton with $p_{\rm T} > 12$ GeV Failed reconst.-level Passed reconst.-level Failed reconst.-level Passed reconst.-level selection selection selection selection

Xinmeng Ye - Higgs 2023

15

- MCP
 - reconstruction+ID, isolation, TTVA efficiency measurements
 - uncertainties from momentum smearing: muon resolution, muon scale, sagitta bias
- Egamma
 - reconstruction, isolation, ID efficiency
 - uncertainties from momentum smearing: EG Scale, EG Resolution
- Modelling
 - signal: α_s + PDF4LHC21 variations, QCD scale variations, PS modelling, signal composition, Higgs boson mass (240 MeV)
 - background: PDF & QCD scale variations, ZZ* modelling (shape variation)
- Other
 - reducible backgrounds
 - PRW
 - luminosity

Syst. correlation for total cross-section combination

- Additional modelling systematic uncertainties considered on the Acceptance
 - α_s + PDF4LHC21 variations, QCD scale variations, PS modelling
 - 2.9% uncertainty on BR(H $\rightarrow\gamma\gamma$), 2.2% on BR(H \rightarrow ZZ* \rightarrow 41)
- Correlation scheme
 - correlated uncertainties
 - lumi, PRW
 - EG scale/resolution
 - Higgs boson mass & BR uncertainties
 - QCD scale acceptance uncertainties
 - other uncertainties decorrelated

- Largest systematic uncertainty from electron identification efficiency of low p_T electrons
 - Conservative systematic unc. due to extrapolation of Run 2 identification/reconstruction calibrations to Run 3 data
- Slight pull of electron energy scale sys. due to the fluctuation of the m_{4e} dist. towards higher masses in data
- ZZ shape modelling theory unc. pulled due to the m_{4e} mass shift and a slight excess of events observed in upper m_{41} sideband region

m₄₁ distribution per channel

2023/11/29

UNIVERSITY OF MICHIGAN

