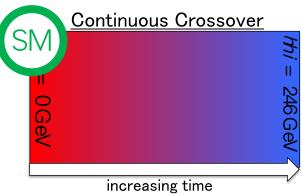

Higgs as a portal and BSM Exotic Higgs decays: Testing EWPT

Wei Liu (刘威) Nanjing University of Science and Technology

JHEP 04(2021) 015, Phys.Rev.D 105 (2022) 11, 115040 Higgs 2023


Phase transition in electroweak theory

EW symmetry restoration in the early Universe

What is the pattern of EW phase transition

It could be –

Lattice calculation shows the phase diagram ==>

Thus in the SM it is a crossover, since $M_h = 125 \text{ GeV} > 75 \text{ GeV}$;

However, a 1st-order EWPT is more interesting.

(Needs new physics)

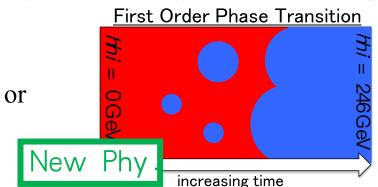
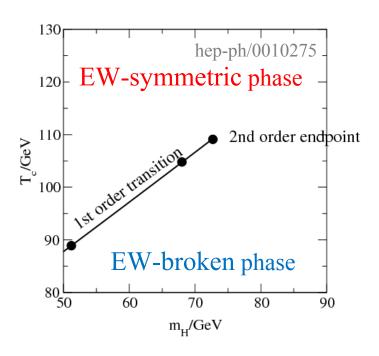
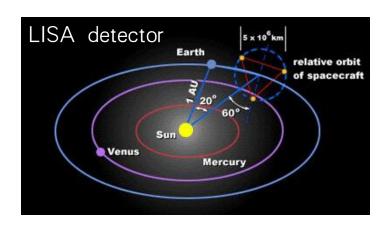



Figure from L.-T. Wang's talk in IHEP workshop

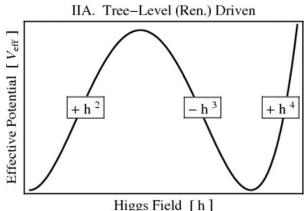


Why is a 1st-order EWPT interesting?

- It's the essential ingredient of the EW baryogenesis, to explain Baryon Asymmetry
- Acting as the background of very rich dark matter mechanisms
- Sources of the stochastic GWs:

- Collision of the bubbles
- Sound waves in plasma
- Turbulance in plasma

EWPT GWs typically peak in mHz.



How to achieve a 1st-order EWPT?

Adding a barrier for the Higgs potential via new physics! The decay between two vacua separated by a barrier. The VEV of the Higgs field *jumps*.

Getting a barrier via the help of additional scalar field(s):

- SM + real singlet (xSM);
- 2HDM;
- Georgi-Machacek model;
- •

We choose the **xSM** as the benchmark model.

- It's simple, but has captured the most important feature of EWPT;
- It can be treated as the prototype of many new physics EWPT models.

EWPT in the xSM (SM + real singlet)

We choose the **xSM** as the benchmark model.

It's simple, but has captured the most important feature of EWPT.

The scalar potential of the xSM

$$V = -\mu^{2}|H|^{2} + \lambda|H|^{4} + \frac{a_{1}}{2}|H|^{2}S + \frac{a_{2}}{2}|H|^{2}S^{2} + b_{1}S + \frac{b_{2}}{2}S^{2} + \frac{b_{3}}{3}S^{3} + \frac{b_{4}}{4}S^{4}$$

8 input parameters:

1 unphysical, 2 fixed by Higgs mass & VEV; 5 free parameters.

Expansion around the VEV

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v+h \end{pmatrix}, \quad S = v_s + s, \qquad \qquad h_1 = s\cos v + h\sin v, \\ h_2 = -s\sin \theta + h\cos \theta,$$

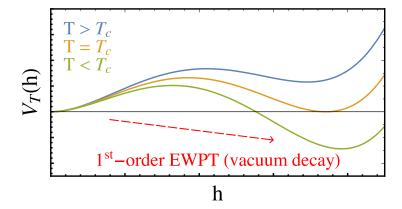
Mass eigenstates & the mixing angle.

 h_1 is singlet-like, h_2 is SM-like

$$h_1 = s\cos\theta + h\sin\theta,$$

 $h_2 = -s\sin\theta + h\cos\theta$

1st-order EWPT in the xSM

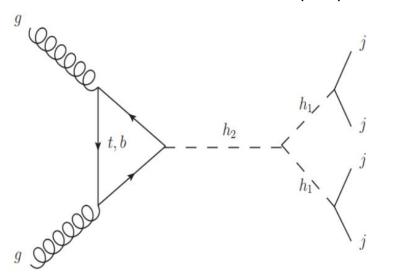

At finite temperature:

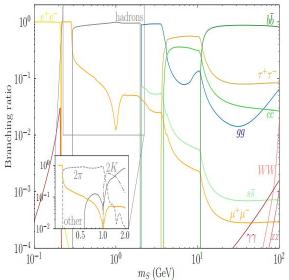
$$V = -(\mu^{2} - c_{H}T^{2})|H|^{2} + \lambda|H|^{4} + \frac{a_{1}}{2}|H|^{2}S + \frac{a_{2}}{2}|H|^{2}S^{2}$$

$$+ (b_{1} + m_{1}T^{2})S + \frac{b_{2} + c_{S}T^{2}}{2}S^{2} + \frac{b_{3}}{3}S^{3} + \frac{b_{4}}{4}S^{4}$$

$$c_{H} = \frac{3g^{2} + g'^{2}}{16} + \frac{y_{t}^{2}}{4} + \frac{\lambda}{2} + \frac{a_{2}}{24}, \quad c_{S} = \frac{a_{2}}{6} + \frac{b_{4}}{4}, \quad m_{1} = \frac{a_{1} + b_{3}}{12}$$

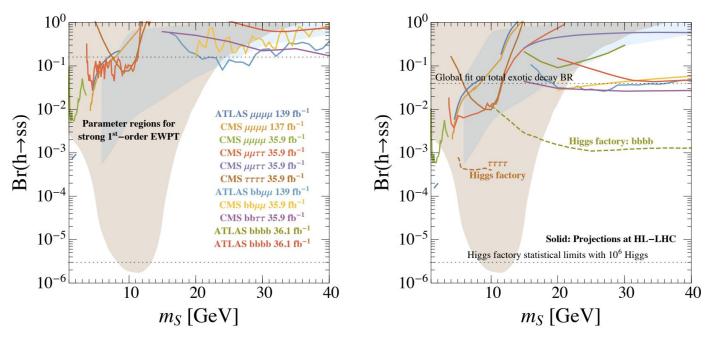
An Illustration --




Question:

Can <u>collider experiments</u> probe the 1st-order EWPT parameter space?

Higgs Exotic Decays


$$gg \rightarrow h_{2(SM)} \rightarrow h_1h_1 \rightarrow 4j$$

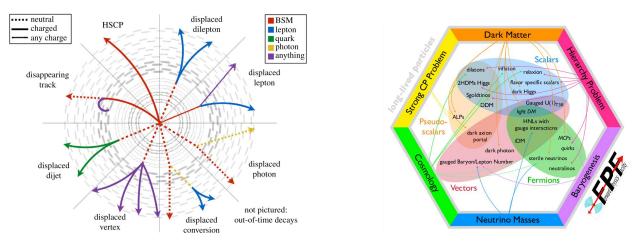
1st-order EWPT leads to large $BR(h_2 \rightarrow h_1 h_1)$. h_1 decays into jets dominantly.

Current Bounds

- BSM Higgs Exotic Decays can be bounded by Prompt Searches at Colliders
- Mapped into the Parameter Space of the 1st-order EWPT
- 1st-order EWPT with low $Br(h_2 \rightarrow h_1 h_1)$ can not be reached even for Higgs factory
- Can we reach even lower $Br(h_2 \rightarrow h_1h_1)$? Carena, Kozaczuk, Liu, Ou, J.Ramsey-Musolf et al, 2203.08206 Kozaczuk, J.Ramsey-Musolf and Shelton, 1911.10210 Carena, Liu, Wang, 1911.10206

Long-lived Particles (LLP)

• LLP is widely searched, of great interests experimentally and theoretically.



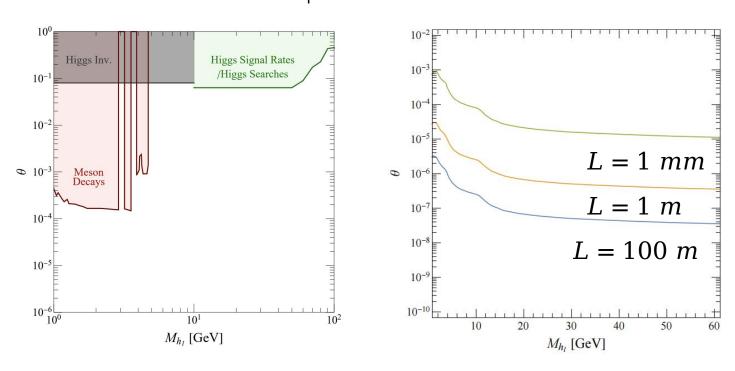
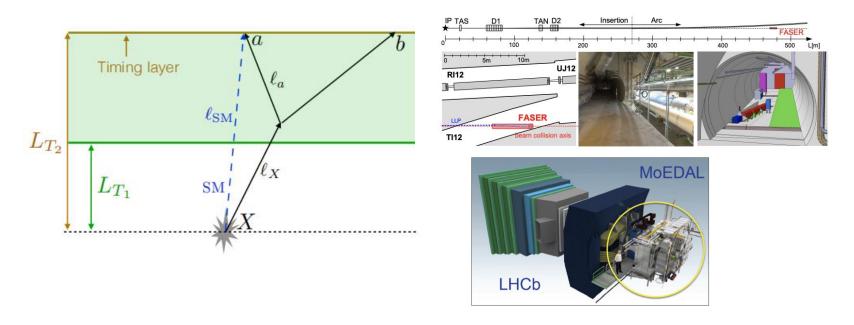

Figure from Albert De Roeck.

Figure from 2203.05090.

• **Light weakly-coupled** particles as LLPs, are strongly motivated, including the **light scalar** responsible for 1st-order EWPT in the xSM.

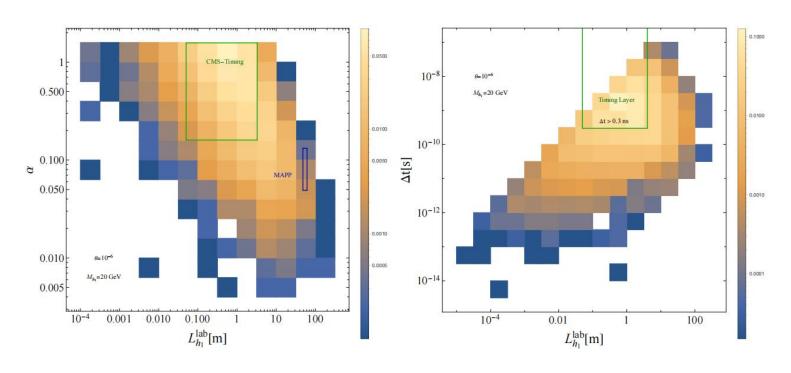
Current Limits on Higgs Mixing


The current limits on (M_{h_1}, θ)

• For M_{h_1} < 10 GeV, the current limits from rare meson decays at the LHCb, leads to h_1 as a long-lived particle (LLP).

Detectors for LLPs

CMS-Timing, FASER, MoEDAL-MAPP are to be operated at Run 3.



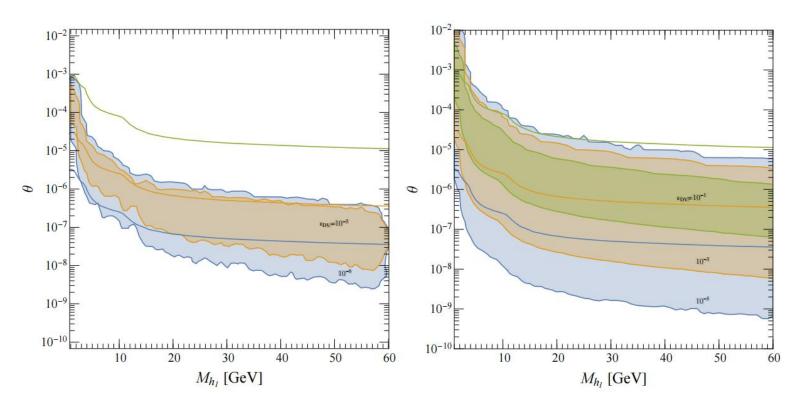
Many others, e.g. MATHUSLA and CODEX-b are in discussions.

CMS-Timing detector using the time-delayed leptons/jets as signals, while the other detectors using displaced vertex.

Detector efficiency

Detector efficiency is a function of geometrical coverage,

and resolution in time for timing detector.


CMS-Timing has large coverage, and good resolution.

MAPP has small coverage,

while negligible for FASER.

Detector efficiency

Detector efficiency is a function of geometrical coverage,

CMS-Timing has efficiency up to 10^{-1} . MAPP has 10^{-4} , while negligible for FASER.

1st-order EWPT parameter space

From J. Kozaczuk, M. Ramsey-Musolf, J. Shelton, 1911.10210

The Higgs mixing is small

Approximate **Z**₂ symmetry

EWPT can happen as two-step transition

$$(h = 0, s \simeq 0) \to (h = 0, s \neq 0) \to (h \neq 0, s \simeq 0),$$

$$a_2 \gtrsim rac{m_{h_1}^2}{4v^2} rac{\Delta}{1 - \Delta},$$
 $|b_3| > \sqrt{rac{9}{4}b_4(2m_{h_1}^2 - a_2v^2 + 2T_{\mathrm{EW}}^2eta)},$ $b_4 \gtrsim rac{m_{h_1}^4\Delta}{4\lambda v^4(1 - \Delta)},$

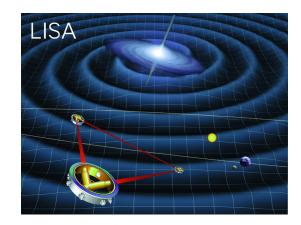
Connects to 1st-order EWPT

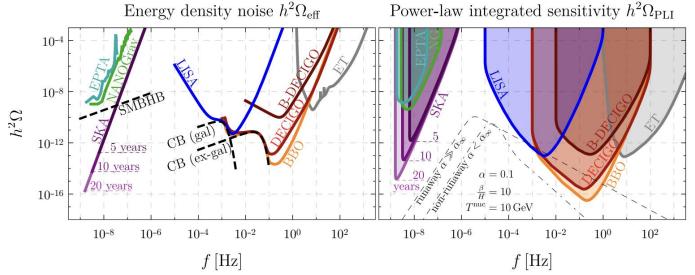
Connection between the number of events and 1st-order EWPT

$$\begin{aligned} & \mathsf{N}_{signal} \\ &= \sigma_{pp \to h_2} \times \mathsf{L} \times \mathsf{BR}_{h_2 \to h_1 h_1}(a_2, M_{h_1}) \\ & \times \mathsf{BR}_{h_1 \to jj}^{2}(M_{h_1}) \times \epsilon_{kin}(M_{h_1}) \times \epsilon_{geo}(M_{h_1}, \theta) \end{aligned}$$

$$BR_{h_2 \to h_1 h_1}(a_2, M_{h_1}) = \frac{\Gamma_{h_2 \to h_1 h_1}}{\Gamma_{h_2}^{SM} + \Gamma_{h_2 \to h_1 h_1}}$$

 $\Gamma_{h_2 \to h_1 h_1} \propto (a_2 v)^2$

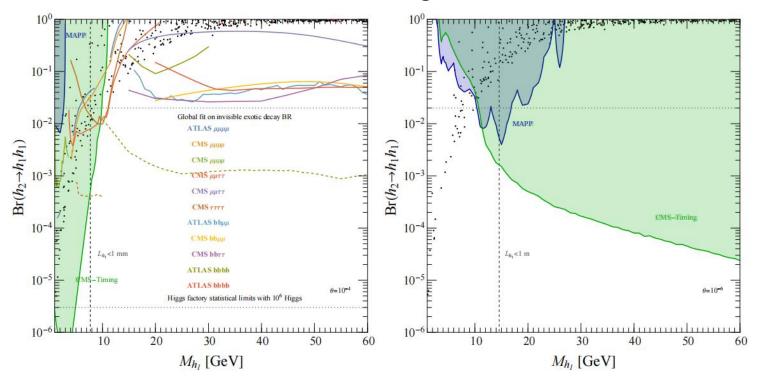

• LLP events are sensitive to $|H|^2S^2$ couplings to trigger 1st-order EWPT.


GW Signal

1st-order EWPT can lead to Primodial GW signal

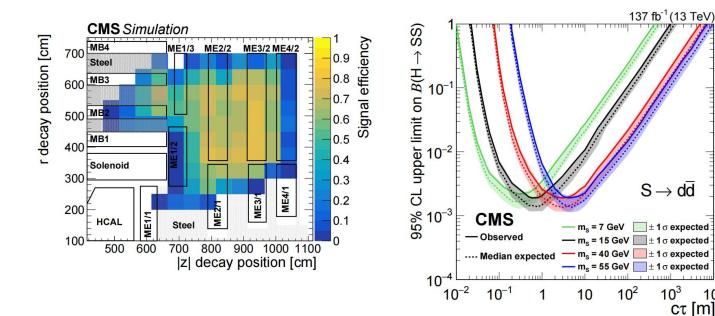
For the LISA detector, signal-to-noise ratio (SNR):

$$SNR = \sqrt{\mathcal{T} \int_{f_{\min}}^{f_{\max}} df \left(\frac{\Omega_{GW}(f)}{\Omega_{LISA}(f)}\right)^2}$$



Breitbach, Kopp, Madge, Opferkuch, Schwaller, 1811.11175

Sensitivity


Fixed $\theta = 10^{-4} (lef t)$, $10^{-6} (right)$.

- No FASER sensitivity, No Enough Higgs from Meson decay
- CMS-Timing can probe large parameter space where the searches for promptly Higgs exotic decays can not reach.
- MAPP can only probe small parameter space
- No GW signals!
- W.L., A.Y. and H. S., Phys.Rev.D 105 (2022) 11, 115040

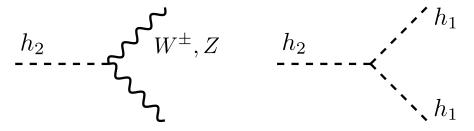
An Existing Search at the CMS

CMS-EXO-20-015

Search for LLPs in the CMS endcap muon detectors

cτ [m]

Can be recast to test 1st-order EWPT, to be done CMS Collaboration, 2107.04838


BSM Scalar Decays

Feature of the xSM

Two neutral scalars: h_1 (Higgs-like) and h_2 (singlet-like, TeV), with mixing angle θ ;

$$g_{h_2VV} = g_{hVV}^{\rm SM} \sin \theta$$
$$g_{h_2f\bar{f}} = g_{hf\bar{f}}^{\rm SM} \sin \theta$$
$$\lambda_{h_2h_1h_1} \propto \sin \theta$$

$$g_{h_1VV} = g_{hVV}^{\text{SM}} \cos \theta$$
$$g_{h_1f\bar{f}} = g_{hf\bar{f}}^{\text{SM}} \cos \theta$$
$$\lambda_{h_1h_1h_1} = \lambda_{hhh}^{\text{SM}} f(\theta)$$

Direct searches at the *pp* colliders

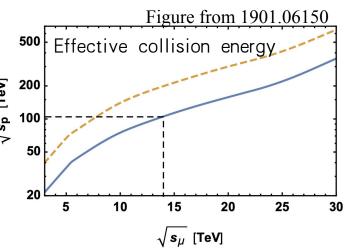
Indirect searches at the e^+e^- colliders

Muon collider!

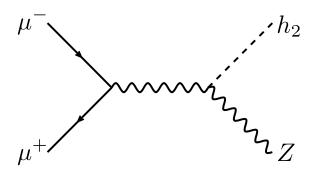
Precision and Energy Frontier!

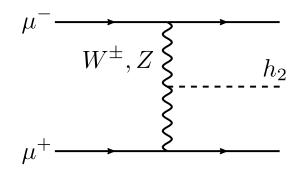
A high-energy muon collider is able to execute both the

- direct search
- indirect search


strategies for EWPT in xSM!

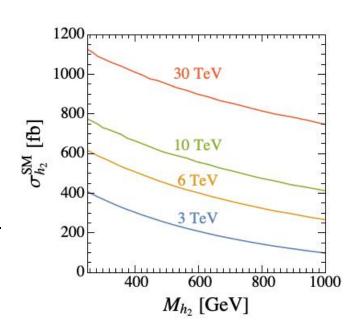
Compared to the e^+e^- machine:


- Synchrotron radiation is suppressed by 10^9 since $M_{\mu} >> M_e$, hence the collision energy can reach O(10) TeV;
- Also very clean, as long as the beam-induced-background is controllable (main challenge).


Compared to the pp machine:

- The entire collision energy can be used to probe hard process;
- Much cleaner due to the small QCD background.

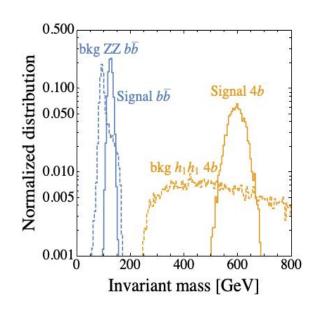
Producing the h_2 at a muon collider

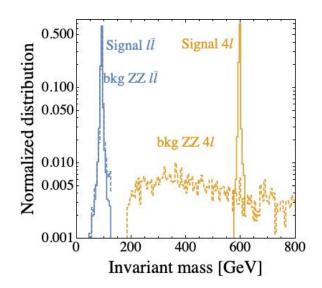


 Zh_2 associated production & Vector Boson Fusion (VBF).

At a multi-TeV collider, the dominant channel is VBF, in which W^+W^- fusion dominates (90%);

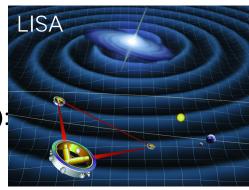
 $\sigma^{\text{SM}}(h_2)$: rate obtained by assuming a Higgs-like coupling for the h_2 .

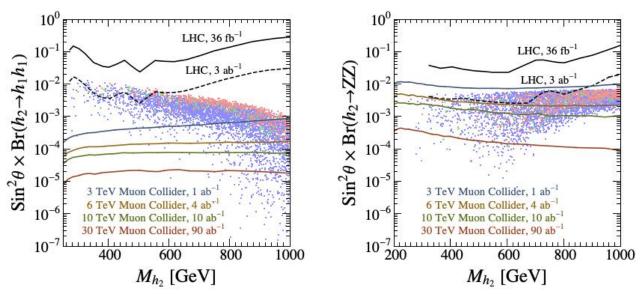



The $h_2 \rightarrow h_1 h_1 \rightarrow bbbb$ channel: Main background:

- Vector Boson Scattering ZZ -> bbbb
- $h_1h_1 \rightarrow bbbb$.

The $h_2 \rightarrow ZZ \rightarrow l^+l^-l^+l^-$ channel: Main background:

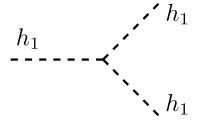

• Vector Boson Scattering ZZ -> $l^+l^-l^+l^-$.



The collider search and gravitational wave detection are complementary!

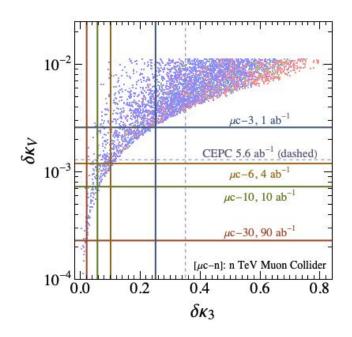
For the LISA detector, signal-to-noise ratio (SNR):




$$SNR = \sqrt{\mathcal{T} \int_{f_{\min}}^{f_{\max}} df \left(\frac{\Omega_{GW}(f)}{\Omega_{LISA}(f)}\right)^2}$$

The diHiggs & diboson channels are complementary as well W.L., K.X., JHEP 04(2021) 015

The gauge boson coupling & triple Higgs coupling. Making use of the results in [Han, Liu, Low and Wang, 2008.12204].


Defining deviations

$$\delta \kappa_V = \left| \frac{g_{h_1 V V}}{g_{h_1 V V}^{\text{SM}}} - 1 \right|,$$

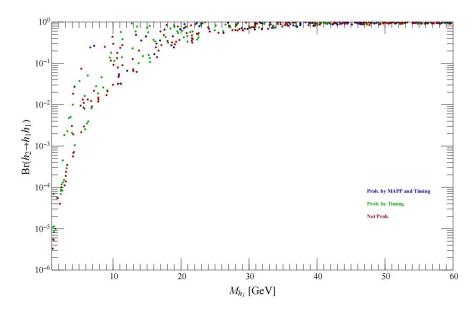
$$\delta \kappa_3 = \frac{\lambda_{h_1 h_1 h_1}}{\lambda_{h_1 h_1 h_1}^{\text{SM}}} - 1$$

We can obtain the projections.

W.L., K.X., JHEP 04(2021) 015

Conclusion

1st-order EW phase transition is interesting:


- Theoretically, it is the essential ingredient of EW baryogenesis, and can trigger very rich dark matter mechanisms;
- Experimentally, it yields detectable gravitational waves.

For light, weakly coupled scalar corresponding to 1st-order EWPT, we search for Higgs Exotic decays to LLP signatures, but no detectable gravitational waves.

For heavy, strongly coupled scalar corresponding to 1st-order EWPT, we search for BSM Scalar Decays to direct and indirect signals at the muon colliders, and complementary GW signals.

Signatures at Colliders

Running *θ*

Green points are probed by CMS-Timing, but not by MAPP. CMS-Timing can probe **a lot more** 1st-order EWPT points. There are still appreciable points not probed by any of LLP detectors.

Main background:

Muon collider: direct search

Vector Boson Scattering ZZ -> bbbb (IIII) and h_1h_1 -> bbbb. Kinematic Cuts:

Cut I: $p_T > 30$ GeV, $|\eta| < 2.43$, $M_{recoil} > 200$ GeV, (Cut I) Cut II: minimizing $\chi^2 = (M_{12} - M_h)^2 + (M_{34} - M_h)^2$

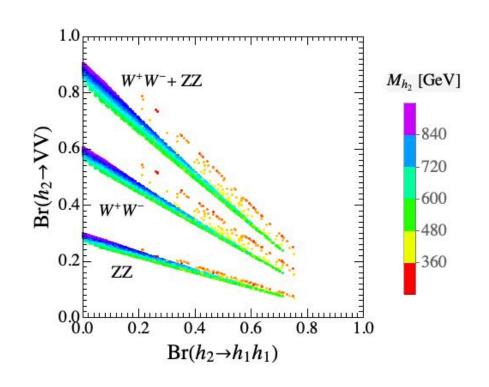
Cut II: Imminizing $\chi^- = (M_{12} - M_h)^- + (M_{34} - M_h)^ |M_{12} - M_h| < 15(10) \text{ GeV}, |M_{34} - M_h| < 15(10) \text{ GeV}$ Cut III: $|M_{1234} - M_{h_2}| < 30(20) \text{ GeV},$ $\Delta E/E = 10\%, \varepsilon_{b-tag} = 70\%$

Decay of h_2 to SM particles (X = vector boson or fermion)

$$\Gamma(h_2 \to XX) = \sin^2 \theta \times \Gamma^{\text{SM}}(h_2 \to XX),$$

$$\Gamma(h_2 \to h_1 h_1) \propto \lambda_{h_2 h_1 h_1}^2$$

Dominant channels: di-boson (W^+W^- , ZZ), tt, and h_1h_1 .


The h_1h_1 channel can reach a branching ratio of 80%;

For heavy h_2 , the VV channel dominates;

We choose

- $h_2 \rightarrow ZZ \rightarrow l^+l^-l^+l^-$
- $h_2 \rightarrow h_1 h_1 \rightarrow bbbb$

for a detailed simulation.

