

Higgs 2023 Nov. 27–Dec. 2, IHEP Beijing

BSM Higgs decay

Hengne Li (South China Normal University) On behalf of the ATLAS, CMS, LHCb collaborations

The SM Higgs(125) is a key to new physics

- SM H(125): discovered 11 years ago, production and decay have been precisely measured.
- BSM models predict exotic decays of the SM H(125): A bridge to new physics, discovery potential:
 - Decays to (pseudo) scalars (e.g. Axions).
 - Invisible decays (e.g. Dark Sectors).
 - Lepton Flavor Violation (LFV).
 - Decays to Long-Lived Particles (LLPs).

BSM Higgs Decay, Hengne Li (SCNU), Higgs 2023, Beijing, 27 Nov. - 2 Dec. 2023

а

Cross-section (pb)

10⁰

10

Latio to SM 1.5 0.1 0.5

A selected list

Invisible decays:

Decays to (pseudo) scalars (e.g. ALPs):

Dark sector (e.g. dark photon):

Lepton Flavour Violation (LFV):

Decays to Long-Lived Particles (LLPs):

 $W/Z + (H \rightarrow inv),$ $VBF + (H \rightarrow inv),$ $t\bar{t}(H \rightarrow inv)$, $H \rightarrow aa \rightarrow bbbb$. $H \rightarrow aa(AA) \rightarrow 4\gamma$, $H \rightarrow aa \rightarrow llbb$, $H \rightarrow Za \rightarrow ll\gamma\gamma$ $H \rightarrow Z_d Z_d \rightarrow 4l$, $H \rightarrow ZZ_d \rightarrow 4l$, $Z(H \rightarrow \gamma \gamma_d)$ $H \rightarrow e\mu$, $e\tau$, $\mu\tau$

 $H \rightarrow LLPs$

See dedicated talk by Shih-Chieh Hsu today.

This talk.

Higgs to light (pseudo) scalars

- Several BSM extensions predict Higgs decays via a pair of on-shell light (pseudo) scalar bosons, noted as "a" or "A", eg, in 2HDM+S or Axion-like particles (ALPs) μ^-
- The (pseudo) scalar "a" generally decays into fermions (a → bb, a → μμ) but can also decay to bosons such as (a → γγ, a → gg) depend on the model

$H \rightarrow aa \rightarrow bbbb$ at CMS CMS-PAPER-HIG-18-026

- Light pseudoscalar bosons (a) interpreted in 2HDM+S models, in mass range 15–60 GeV:
 - Higgs associated with leptonically decaying W or Z boson.
 - BDT used for signal-background separation.
- Set upper limits on the cross section of combined WH and ZH processes.

$H \rightarrow AA \rightarrow 4\gamma$ at CMS

- Low mass (0.1–1.2 GeV) ALP model search:
 - First direct search for Higgs exotic decay to ALPs with ALP to 2γ , limits set on $B(H \rightarrow aa \rightarrow 4\gamma)$
 - Merged $\gamma\gamma$ reconstructed as a single photon-like object Γ , a regressor trained to predict $m(\Gamma)$ based on low-level detector information
 - Backgrounds $H \rightarrow \gamma \gamma$ and multijet processes

Phys. Rev. Lett. 131 (2023) 101801

$H \rightarrow aa \rightarrow 4\gamma$ at CMS

JHEP 07 (2023) 148

- Higher Mass (15–62 GeV) 2HDM+S pseudoscalar Search.
 - Well isolated and fully reconstructed photons, limits set on $\sigma(H) \times B(H \rightarrow aa \rightarrow 4\gamma)$
 - Backgrounds: γ+jets processes, estimated by data-driven method
 - Train a BDT parameterized in m(a) for event categorization

$H \rightarrow aa \rightarrow 4\gamma$ at ATLAS

• ALPs allows wider mass range than original Peccei-Quinn QCD axion.

$$\Gamma(a \to \gamma \gamma) \equiv \frac{4\pi \alpha^2 m_a^3}{\Lambda^2} \left| C_{\gamma \gamma}^{\text{eff}} \right|^2$$

- Prompt (short-lived), large Γ:
 - $m_a > 5 \text{ GeV}$ and $C_{\gamma\gamma}/\Lambda > 0.1 \text{TeV}^{-1}$
- Long-lived, small Γ:
 - $m_a > 0.1 \,\text{GeV}$ and $C_{\gamma\gamma}/\Lambda < 0.1 \,\text{TeV}^{-1}$

Dedicated MVA to identify calorimeter clusters with 2 merged photons.

 $m_a < 3.5 \text{ GeV}$ Only in the long lived search $m_a > 3.5 \text{ GeV}$

$H \rightarrow aa \rightarrow 4\gamma$ at ATLAS ATLAS-CONF-2023-040

- Explored ALP masses from 100 MeV to 62 GeV.
- The most stringent limits to date, assuming $\frac{C_{aH}}{\Lambda^2} = 1.0 \text{ TeV}^{-2}$

Limits on the ALP mass and coupling to photons at 95% CL

BSM Higgs Decay, Hengne Li (SCNU), Higgs 2023, Beijing, 27 Nov. - 2 Dec. 2023

Η

$H \rightarrow aa \rightarrow \mu\mu bb/\tau\tau bb$ at CMS CMS-PAS-HIG-22-007

- Interpretation under 2HDM+S model with $m_a > 15$ (12) GeV for μ (τ) channel
 - Excellent resolution in $m(\mu\mu)$, and large $B(a \rightarrow bb)$
 - Three $\tau\tau$ decay channels: $\mu\tau_h$ (most sensitive) / $e\tau_h$ / $e\mu$
 - Major backgrounds are top-pair, Z + jets and $jet \rightarrow \tau_h$ fakes, data-driven estimation
 - Limits sets on $B(H \rightarrow aa \rightarrow \tau\tau bb)$ and $B(H \rightarrow aa \rightarrow \mu\mu bb)$

$H \rightarrow aa \rightarrow \mu\mu bb / \tau\tau bb$ at CMS CMS-PAS-HIG-22-007

- Combination of $\mu\mu$ bb and $\tau\tau$ bb, most stringent limits in $12 < m_a < 60 \text{ GeV}$
- Interpretation in 2HDM+S (four coupling types can avoid FCNC at LO)

30/11/2023

BSM Higgs Decay, Hengne Li (SCNU), Higgs 2023, Beijing, 27 Nov. - 2 Dec. 2023

$H \rightarrow aa \rightarrow \mu\mu bb$ at ATLAS

Phys. Rev. D 105 (2022) 012006

- Searched for resonance (2HDM models) in the range $16 < m_{\mu\mu} < 62 \text{ GeV}$:
 - Assuming $m_{\mu\mu} = m_{bb}$ within resolution
 - BDT used to suppress major backgrounds (DY, $t\bar{t}$), modelled using control regions
- Upper limits are set on $Br(H \rightarrow aa \rightarrow bb\mu\mu)$:
 - Results with BDT: Excess of $3.3\sigma~(1.7\sigma)$ local (global) observed at $m_a=52~{
 m GeV}$
 - BDT selection significantly improve the sensitivity
 - Result without BDT, no excess is observed.

 $H \rightarrow Za \rightarrow ll\gamma\gamma$ at CMS

arXiv:2311.00130 (submitted to PLB)

- First search in LHC looking for the signature $Za \rightarrow ll\gamma\gamma$
 - Consider 1 $< m_a < 30 \text{ GeV}$
 - Backgrounds Z(ll) with $jet \rightarrow \gamma$ fakes, data-driven method
 - BDT classifier parameterised in m_a for event categorization
 - Limits set on $\sigma(H) \times B(H \rightarrow Za \rightarrow ll\gamma\gamma)$ and ALP models

Higgs decay to dark photons

- Many SM extensions include a U(1) dark gauge symmetry with gauge boson Z_d mixing with SM Higgs via κ and with hypercharge gauge boson via ε.
- Gives rise to $H \rightarrow Z_d Z_d$ and $H \rightarrow Z Z_d$.
- Z_d has significant decays to ll (~20 30%).

$H \rightarrow Z_d Z_d \rightarrow 4l \text{ at ATLAS}$ JHEP 03 (2022) 041

- Search for exotic decays of the Higgs boson into four leptons through intermediate scalars or vector bosons, motivated by dark-sector models
- Main background are estimated from simulation : $H \rightarrow ZZ^* \rightarrow 4l$, $ZZ^* \rightarrow 4l$ and Heavy flavour jets faking leptons
- Limits set on signal cross-section, fiducial cross-section, Higgs branching ratios, and model parameters

$H \rightarrow Z_d Z_d / Z Z_d \rightarrow 4l \text{ at CMS}$ EPJC 82 (2022) 290

• Equivalent CMS analysis, sets limits on $B(H \rightarrow XX) \cdot B(X \rightarrow ee \text{ or } \mu\mu)$ for both $H \rightarrow Z_d Z_d$ and $H \rightarrow Z Z_d$

$H \rightarrow \gamma \gamma_d$ in ZH at ATLAS

JHEP 07 (2023) 133

- Search for Hidden Valley scenario $H \rightarrow \gamma \gamma_d$ for dark photon mass 0-40 GeV. Setting 95% CL limits on $BR(H \rightarrow \gamma \gamma_d)$ for varied γ_d masses.
- Backgrounds characterized by fake E_T^{miss} and misidentified photons, BDT kinematic discriminants for signal selection, data-driven + MC for background modelling.

BSM Higgs Decay, Hengne Li (SCNU), Higgs 2023, Beijing, 27 Nov. - 2 Dec. 2023

Lepton flavour violation (LFV)

- $H \rightarrow e\mu, e\tau, \mu\tau$ violate lepton flavour conservation
 - Accidental symmetry in SM, already broken by neutrino oscillations.
- In various BSM theories, such LFV processes can occur, and the Higgs boson can play a key role in these transitions.
 - SUSY, composite Higgs, Randall-Sundrum, 2HDM, models with heavy neutrinos, etc.

$H \rightarrow e \tau / \mu \tau$ at ATLAS

- $H \rightarrow e\tau$ and $H \rightarrow \mu\tau$, Leptonic and hadronic decays of the tau lepton
- Backgrounds: Z → ττ; W + jets, multi-jet events: BDT and NN to suppress background
- Both *eτ/μτ* independent and simultaneous fits are performed Yukawa coupling:

simultaneous fits results are shown on this slide

$$\sqrt{ \left| Y_{\tau e} \right|^2 + \left| Y_{e\tau} \right|^2 } < 0.0013$$

$$\sqrt{ \left| Y_{\tau \mu} \right|^2 + \left| Y_{\mu \tau} \right|^2 } < 0.0012$$

JHEP 07 (2023) 166

BSM Higgs Decay, Hengne Li (SCNU), Higgs 2023, Beijing, 27 Nov. - 2 Dec. 2023

 $H \rightarrow e\tau/\mu\tau$ at CMS

• The corresponding CMS results published earlier:

Phys.Rev.D 104 (2021) 3, 032013

Yukawa coupling:

$H \rightarrow e \mu$ at CMS _{Phys.Rev.D 108 (2023) 7, 072004}

- Searched H \rightarrow eµ decay; no excess, set 4.4 $\times 10^{-5}$ upper limit at 95% CL.
- Focused on ggH and VBF; targeted prompt $e\mu$ pairs.
- $m_{e\mu}$ distribution analysis confirms data-background alignment; CLs criterion used for branching fraction limits.

Higgs decays to long-lived particles (H \rightarrow LLPs)

- Suppose a new massive, longlived particle exists: it would be a clear sign for new physics
- Long-lived particles (LLPs) appear in many BSM scenarios:
 - Compressed SUSY, AMSB (Anomaly Mediated Supersymmetry Breaking), heavy neutral leptons, etc

$H \rightarrow LLPs$ at LHCb

Eur.Phys.J.C 82 (2022) 4, 373

- Two LLP production processes:
 - (a) A Higgs-like boson (mass 30 to 200 GeV/c²) decaying into LLPs and
 - (b) Direct LLP production from quark interactions (LLP masses 10 to 90 GeV/c²).
- The LLP $(\tilde{\chi}_1^0)$ decays into a muon and two quarks.
- Signal events selected based on displaced vertex containing a high-pT muon; MVA for background suppression, a data-driven approach for background modelling.

$H \rightarrow LLPs$ at LHCb Eur.Phys.J.C 82 (2022) 4, 373

- No evidence of these long-lived states was observed.
- Set upper limits on the production cross-section times branching ratio for each model considered.

BSM Higgs Decay, Hengne Li (SCNU), Higgs 2023, Beijing, 27 Nov. - 2 Dec. 2023

Summary and outlook

- The SM Higgs, discovered 11 years ago, has well-studied production and decay patterns.
- BSM theories predict exotic Higgs decays, hinting at new physics.
- Focus on light (pseudo) scalars, invisible decays (dark sector), Lepton Flavor Violation (LFV), and Long-Lived Particles (LLPs), studies conducted using data from CMS, ATLAS, and LHCb.
- No significant excess found in exotic decay channels. Results led to stringent limits on branching ratios and cross-sections for these decays.
- Ongoing research to explore Higgs boson's role in uncovering new physics.
- Eager anticipation for new insights in upcoming LHC Run 3.

Backup slides

$H ightarrow e \mu$ at ATLAS Phys.Lett.B 801 (2020) 135148

- $H \rightarrow e\mu$ decay search;
- Analysis involved *ee* and *eμ* channels;
- No significant signal, observed upper limit 6.2×10^{-5} at 95% CL.

