

CP structure and searches for CP violation in Higgs interactions

on behalf of the ATLAS and CMS collaborations

Tongguang Cheng (Beihang University)

Higgs CP structure/CP violation in

- □ Higgs-fermion interactions
 - **□**Higgs-τ
 - □Higgs-top
- □ Higgs-gauge boson interactions
 - □Higgs-W/Z
 - □Higgs-gluon

Higgs turns (more than) ten

About 10 years ago, we published the first set of results on Higgs CP studies with the 7/8TeV collision data

Motivations to search for Higgs CP violation

Motivation from cosmology:

□ CP-violation is an essential ingredient to understand of the matter anti-matter asymmetry in the Universe

□ One may interpret the baryogenesis as being induced by the CPviolating effect in the Higgs sector (see for e.g.,<u>arXiv:2311.06949</u>)

• Motivation from theory:

 BSM theories, such as 2HDM, contain Higgs CP violation
 2HDM : <u>T. D. Lee, Phys. Rev. D 8, 1226 (1973)</u> J. F. Gunion and H. E. Haber, Phys. Rev. D 72, 095002 (2005) I. Low, N. R. Shah and X. Wang, Phys. Rev. D 105, 035009 (2022)

□ MSSM : Bing Li and Carlos E. M. Wagner Phys. Rev. D 91, 095019 (2015)

Motivations to search for Higgs CP violation

Mass $m = 125.25 \pm 0.17$ GeV (S = 1.5) Full width $\Gamma = 3.2^{+2.4}_{-1.7}$ MeV (assumes equal on-shell and off-shell effective couplings)

H Signal Strengths in Different Channels

Combined Final States = 1.03 ± 0.04 $WW^* = 1.00 \pm 0.08$ $ZZ^* = 1.02 \pm 0.08$ $\gamma \gamma = 1.10 \pm 0.07$ $c \overline{c}$ Final State = 8 ± 22 (S = 1.9) from PDG tables

 $\begin{array}{l} b \,\overline{b} = 0.99 \pm 0.12 \\ \mu^+ \,\mu^- = 1.21 \pm 0.35 \\ \tau^+ \,\tau^- = 0.91 \pm 0.09 \\ \gamma^* \,\gamma \, {\rm Final \ State} = 1.5 \pm 0.5 \\ {\rm Fermion \ coupling} \, (\kappa_F) = 0.95 \pm 0.05 \\ {\rm Gauge \ boson \ coupling} \, (\kappa_V) = 1.035 \pm 0.031 \\ t \,\overline{t} \, H \ {\rm Production} = 1.10 \pm 0.18 \\ t \, H \ {\rm production} = 6 \pm 4 \\ H \ {\rm Production \ Cross \ Section \ in \ } p \ {\rm Collisions \ at \ } \sqrt{s} = 13 \ {\rm TeV} = \\ 56.9 \pm 3.4 \ {\rm pb} \end{array}$

Data still allow BSM Higgs couplingsCP mixing is not forbidden

Higgs turns (more than) ten

Now we are able to study detailed structures on the Higgs couplings (not only the process rates)

ATLAS: <u>Nature 607, pages 52-59 (2022)</u> CMS: <u>Nature 607 (2022) 60</u>

$$\mathcal{L}_{Y} = -\frac{m_{\tau}}{v} H(\kappa_{\tau} \overline{\tau} \tau) + \widetilde{\kappa}_{\tau} \overline{\tau} i \gamma_{5} \tau) \quad \tan(\alpha^{H\tau\tau}) = \frac{\widetilde{\kappa}_{\tau}}{\kappa_{\tau}}$$

$$d\Gamma_{H \to \tau^{+}\tau^{-}} \approx 1 - b(E_{+})b(E_{-})\frac{\pi^{2}}{16}\cos(\varphi_{CP}^{*} - 2\phi_{\tau})$$

$$\downarrow^{\tau}$$

$$d\Gamma_{LAS} \text{ Simulation} + \frac{Scalar}{v} + \frac{Scalar}{v}$$

 ϕ^*_{CP} [degrees]

ATLAS: Eur. Phys. J. C 83 (2023) 563 CMS: JHEP 06 (2022) 012

$H \to \tau^+ \tau^- \to \pi^+ \pi^- + 2\nu \qquad H \to \tau^+ \tau^- \to \pi^+ \pi^0 \nu \pi^- \pi^0 \nu \qquad H \to \tau^+ \tau^- \to \pi^+ \pi^0 \nu \pi^- \nu$

Decay channel	Decay mode combination	Method	Fraction in all τ -lepton-pair decays
	ℓ–1p0n	combination Method Fraction in all τ -let p0n IP 8.11 p1n IP- ρ 18.32 pXn IP- ρ 7.66 p0n IP- a_1 6.92 -1p0n IP 1.32 -1p1n IP- ρ 6.02 -1p1n IP- ρ 6.02 -1pXn IP- ρ 5.67 -1pXn ρ 5.66 -3p0n ρ - a_1 5.14	8.1%
$ au_{ m lep} au_{ m had}$	ℓ–1p1n		18.3%
	ℓ–1pXn	$IP-\rho$	7.6%
	ℓ–3p0n	$IP-a_1$	6.9%
	1p0n-1p0n	IP	1.3%
	1p0n–1p1n	$IP-\rho$	6.0%
	1p1n-1p1n	ho	6.7%
Thad Thad	1p0n–1pXn	$IP-\rho$	2.5%
	1p1n–1pXn	ho	5.6%
	1p1n-3p0n	$\rho - a_1$	5.1%

CP structure in H decays to τ-leptons

- □ Data with background subtracted are compared with pure CP-even and pure CP-odd assumptions.
- Pure CP-odd is strongly disfavor but there is still room for CP mixing in data.

CP structures in Higgs-top interactions

- Events are classified into leptonic and hadronic events and categorized according to bkg rejection and CP BDTs
- **\square** Signal extraction from the $m_{\gamma\gamma}$ spectrum

ATLAS Ηγγ : Phys. Rev. Lett. 125 (2020) 061802

Data with background subtracted are compared with CP-even and CP-odd signals in three categories
 categorization based on events' CP BDT ranges

- **CP** mixing angle $|\alpha| < 43^{\circ}$ @95% CL
 - ATLAS Ηγγ : Phys. Rev. Lett. 125 (2020) 061802

Dedicated CP sensitive variables defined with top quark kinematics

 \square b₄ for di-lepton, b₂ for lepton+jets,

BDT for boosted lepton+jets

$$b_2 = \frac{(\vec{p}_1 \times \hat{z}) \cdot (\vec{p}_2 \times \hat{z})}{|\vec{p}_1||\vec{p}_2|}, \text{ and } b_4 = \frac{(\vec{p}_1 \cdot \hat{z})(\vec{p}_2 \cdot \hat{z})}{|\vec{p}_1||\vec{p}_2|}$$

ATLAS Hbb arxiv:2303.05974 (submitted to JHEP)

- Events are categorized as single-lepton, di-lepton, and full hadronic
- □ For each category,
 - ANNs separate different signal or background processes.
- □ The signal is extracted in a simultaneous likelihood fit of the discriminating observable or of the event yield

CMS Hbb : PAS HIG-19-011

- □ Best fit at (+0.53, 0.00) from likelihood ratio as a function of κ_t and $\tilde{\kappa}_t$, with κ_V fixed at 1
- \Box CP fraction f_{CP} is compatible with zero

11/29/23

CMS Hbb : PAS HIG-19-011

CP structures in ttH+tH(multi-lepton)

- Events are categorized as 2*lSS* + 0/1τ_h and 3*l* + 0/1τ_h
 Multi-output ANN to separate and classify signal and background processes
- □ For each category, BDT is trained to separate CP-even/odd

CMS multi-lepton : <u>JHEP 07 (2023) 092</u>

and D_{0-} simultaneously

CMS Hγγ : Phys. Rev. Lett. 125 (2020) 061801 11/29/23 Higgs 2023

CP structures in Higgs-gauge boson

 Higgs-VV couplings measured based on the Effective Field Theory approach
 CP structure is explored with the Optimal Observable (OO)

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}}{\Lambda^{2}} O_{i}^{(6)}$$

Three independent dim-6 operators for CP-odd in SMEFT

Operator	Structure	Coupling
	Warsaw Basis	
$O_{\Phi ilde W}$	$\Phi^{\dagger} \Phi \tilde{W}^{I}_{\mu u} W^{\mu u I}$	$c_{H\widetilde{W}}$
$O_{\Phi \tilde{W}B}$	$\Phi^{\dagger} \tau^{I} \Phi \tilde{W}^{I}_{\mu \nu} B^{\mu \nu}$	$c_{H\widetilde{W}B}$
$O_{\Phi ilde{B}}$	$\Phi^{\dagger}\Phi \tilde{B}_{\mu u}B^{\mu u}$	$c_{H\widetilde{B}}$
	Higgs Basis	
0 _{hZŽ}	$hZ_{\mu\nu}\tilde{Z}^{\mu\nu}$	\widetilde{c}_{zz}
O _{hZÃ}	$hZ_{\mu\nu}\tilde{A}^{\mu\nu}$	$\widetilde{c}_{z\gamma}$
$O_{hA\tilde{A}}$	$hA_{\mu\nu}\tilde{A}^{\mu\nu}$	$\widetilde{c}_{\gamma\gamma}$

$$OO = \frac{2Re(\mathcal{M}_{SM}^* \mathcal{M}_{CP-odd})}{|\mathcal{M}_{SM}|^2}$$

CP structures in Higgs-gauge boson

□ Amplitude of HVV(ZZ, WW, $Z\gamma$, $\gamma\gamma$ and gg) are parameterized as

$$A(\text{HVV}) \sim \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_1^2 + \kappa_2^{\text{VV}} q_2^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + \frac{a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu}}{(\Lambda_1^{\text{VV}})^2} \right]$$
a₁ **SM-like**, **a**₃ **CP-odd CP-odd**

Build matrix-element based discriminants to tag different anomalous couplings

CP structures in VBF(Hγγ)

- □ Two BDTs are used to separate sig/bkg and VBF/ggH
- □ Four regions are defined based on two BDTs (TT,TL,LT, LL)
- \Box Extract signals from simultaneous fit to the m_{yy} spectra in all OO bin
- $\Box C_{H\widetilde{W}}$ is determined from CP violation contribution

ATLAS VBFγγ: Phys. Rev. Lett. 131 (2023) 061802

CP structures in HVV(Higgs-to-4l)

ATLAS Higgs-to-41: arXiv:2304.09612 (submitted to JHEP)

CP structures in HVV(Higgs-to-4l)

Seven coefficients (3 for Warsaw basis, 3 for Higgs basis, 1 for simple parametrization) are constrained.

CP structures from differential measurements

- Differential observables related to Higgs production/decay can be used probe CP structures
- Binned cross section based on STXS have sensitivity to CP-odd EFT coefficients

CP structures from differential measurements

27

CP structures in VBF (H\tau^+\tau^-)

- □ Three MELA discriminants are used
 - $\square D_{2jet}^{VBF}$ to tag VBF production
 - \Box D_{0-} to separate SM HVV with pure CP HVV
 - $\square D_{CP}^{VBF}$ sensitive to the interference between the CP-odd and CP-even (asymmetric distribution for pure CP events)

CMS: Phys. Rev. D 108 (2023) 032013

CP structures in ggH (H $\tau^+\tau^-$)

<u>Higgs-gluon</u> anomalous couplings are constrained by measuring ggH production

CMS: Phys. Rev. D 108 (2023) 032013

CP structure in ggH, HVV (H4l+ $H\tau^+\tau^-$)

30

CP structure from off-shell measurement

Summary

The CP structure of the Higgs boson is studied in different Higgs production and decay final states with Run-2 data

- □ Pure CP-odd is excluded for Higgs- τ and Higgs-top interactions. CP-mixing in the Higgs-fermion interaction is constrained.
- Anomalous coupling/SMEFT coefficient studies set up constraint on CP structures in Higgs-to-gauge boson interactions

No significant CPV in Higgs interaction have been observed. But the possibility of CP-mixing Higgs interactions is still allowed by the data.

Backup

Reconstruction of \tau-decay planes

CP structure in H decays to τ -leptons

- Events are classified into leptonic events (at least one top decay leptonically) and hadronic events
- BDTs are trained for sig/bkg (bkg rejection BDT) and CP-even/odd separation (CP BDT)

ATLAS Ηγγ : Phys. Rev. Lett. 125 (2020) 061802

Channel (TR)	Final SRs and CRs	Classification BDT selection	Fitted observable
	$CR_{no-reco}^{\geq 4j,\geq 4b}$	_	$\Delta \eta_{\ell\ell}$
Dilector (TD $\geq 4i, \geq 4b$)	$CR^{\geq 4j,\geq 4b}$	$BDT^{\geq 4j, \geq 4b} \in [-1, -0.086)$	b_4
Dilepton (TK)	$\mathrm{SR}_1^{\geq 4j,\geq 4b}$	$BDT^{\geq 4j, \geq 4b} \in [-0.086, 0.186)$	b_4
	$\mathrm{SR}_2^{\geq 4j, \geq 4b}$	$BDT^{\geq 4j, \geq 4b} \in [0.186, 1]$	b_4
	$\operatorname{CR}_{1}^{\geq 6j,\geq 4b}$	$BDT^{\geq 6j, \geq 4b} \in [-1, -0.128)$	<i>b</i> ₂
ℓ +jets (TR ^{$\geq 6j, \geq 4b$})	$\operatorname{CR}_{2}^{\geq 6j, \geq 4b}$	$BDT^{\geq 6j, \geq 4b} \in [-0.128, 0.249)$	b_2
	$\mathrm{SR}^{\tilde{\geq}6j,\geq4b}$	$BDT^{\geq 6j, \geq 4b} \in [0.249, 1]$	b_2
ℓ +jets (TR _{boosted})	SR _{boosted}	$BDT^{boosted} \in [-0.05, 1]$	BDT ^{boosted}

$$b_2 = \frac{(\vec{p}_1 \times \hat{z}) \cdot (\vec{p}_2 \times \hat{z})}{|\vec{p}_1||\vec{p}_2|}, \text{ and } b_4 = \frac{(\vec{p}_1 \cdot \hat{z})(\vec{p}_2 \cdot \hat{z})}{|\vec{p}_1||\vec{p}_2|}$$

ATLAS Hbb arxiv:2303.05974

CP structures in ttH+tH(multi-lepton)

CMS multi-lepton : <u>JHEP 07 (2023) 092</u>

CP structures in VBF(Hγγ)

Two BDTs are used to separate sig/bkg and VBF/ggH
Four regions are defined based on two BDTs

ATLAS VBFγγ: Phys. Rev. Lett. 131 (2023) 061802

CP structure in HVV

				95% Confidence interval [TeV ⁻²		
Wilson coefficients	Operator structure	Fit distr	Paramater order	Expected	Observed	
c _{HW}	$H^\dagger H W^n_{\mu u} W^{n\mu u}$	$\Delta \phi_{jj}$	lin	[-1.7, 1.6]	[-2.6, 0.60]	
			lin + quad	[-1.4, 1.4]	[-1.8, 0.61]	
C _{HB}	$H^\dagger H B_{\mu u} B^{\mu u}$	$\Delta \phi_{jj}$	lin	[-5.9, 6.4]	[-6.7, 4.6]	
			lin + quad	[-0.59, 0.66]	[-0.60, 0.66]	
c_{HWB}	$H^\dagger au^n H W^n_{\mu u} B^{\mu u}$	$\Delta \phi_{jj}$	lin	[-10, 9]	[-14, 5.9]	
			lin + quad	[-1.2, 1.1]	[-1.2, 1.1]	
c_{Hq1}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}\gamma^{\mu}q)$	$p_{ m T}^{j1}$	lin	[-12, 15]	[-6.9, 22]	
	(μ / (1, 1)		lin + quad	[-1.9, 1.7]	[-2.2, 2.0]	
c_{Hq3}	$(H^{\dagger}i\overset{\leftrightarrow}{D}^{n}H)(\bar{a}\sigma^{n}x^{\mu}a)$	p_{T}^{j1}	lin	[-0.56, 0.47]	[-0.74, 0.30]	
1	$(\Pi^{\mu} D_{\mu} \Pi)(q \iota \gamma q)$	1 1	lin + quad	[-0.43, 1.2]	[-0.56, 0.43]	
Сн.	<pre></pre>	n^{j1}	lin	[-8.3, 6.9]	[-11, 4,2]	
<i>с</i> пи	$(H^{\mu}iD_{\mu}H)(\bar{u}\gamma^{\mu}u)$	P_{T}				
	\leftrightarrow	i1	lin + quad	[-2.0, 2.6]	[-2.5, 3.1]	
C _{Hd}	$(H^\dagger i \overset{\smile}{D}_\mu H) (ar{d} \gamma^\mu d)$	$p_{\mathrm{T}}^{j_{\mathrm{T}}}$	lin	[-21, 25]	[-13, 33]	
			lin + quad	[-3.0, 2.7]	[-3.7, 3.4]	
$c_{H\tilde{W}}$	$H^\dagger H ilde W^n_{\mu u} W^{n\mu u}$	$\Delta \phi_{jj}$	lin	[-1.7, 1.7]	[-1.8, 1.3]	
	,		lin + quad	[-1.4, 1.4]	[-1.1, 1.4]	
$c_{H\tilde{B}}$	$H^\dagger H { ilde B}_{\mu u} B^{\mu u}$	$\Delta \phi_{jj}$	lin	[-28, 28]	[-32, 22]	
			lin + quad	[-0.62, 0.62]	[-0.63, 0.63]	
c _{HŴB}	$H^{\dagger} au^{n}H ilde{W}^{n}_{\mu u}B^{\mu u}$	$\Delta \phi_{jj}$	lin	[-15, 15]	[-17, 12]	
			lin + quad	[-1.2, 1.1]	[-1.2, 1.1]	

ATLAS HWW

Higgs 2023

Phys. Rev. D 108, 072003 (2023)

40

CP structure in HVV

Parameter	Scenario		Observed	Expected
f _{a3}	$\begin{cases} & \text{Approach 1} \\ & f_{a2} = f_{\Lambda 1} = f_{\Lambda 1}^{Z\gamma} = 0 \\ & \text{Approach 1} \\ & \text{float } f_{a2}, f_{\Lambda 1}, f_{\Lambda 1}^{Z\gamma} \\ & \text{Approach 2} \\ & \text{float } f_{a2}, f_{\Lambda 1} \end{cases}$	best fit 68% CL 95% CL best fit 68% CL 95% CL 95% CL 95% CL	0.00004 [-0.00007, 0.00044] [-0.00055, 0.00168] -0.02656, 0.00034] [-0.07191, 0.00990] 0.00005 [-0.00010, 0.00061] [-0.00072, 0.00218]	0.00000 [-0.0081, 0.0081 [-0.00412, 0.00412 0.00000 [-0.0086, 0.00086 [-0.00423, 0.00422 0.0000 [-0.0012, 0.0012] [-0.0057, 0.0057]
f _{a2}	$\left\{ \begin{array}{l} \text{Approach 1} \\ f_{a3}=f_{\Lambda 1}=f_{\Lambda 1}^{Z\gamma}=0 \\ \text{Approach 1} \\ \text{float } f_{a3}, f_{\Lambda 1}, f_{\Lambda 1}^{Z\gamma} \\ \text{Approach 2} \\ \text{float } f_{a3}, f_{\Lambda 1} \end{array} \right.$	best fit 68% CL 95% CL best fit 68% CL 95% CL 95% CL 95% CL	$\begin{array}{l} 0.00020\\ [-0.00010, 0.00109]\\ [-0.00078, 0.00368]\\ -0.24679\\ [-0.41087, -0.15149] \cup [-0.00008, 0.00065]\\ [-0.66842, -0.08754] \cup [-0.00091, 0.00309]\\ -0.00002\\ [-0.00178, 0.00103]\\ [-0.00694, 0.00536]\end{array}$	$\begin{array}{c} 0.0000 \\ [-0.0012, 0.0014] \\ [-0.0075, 0.0073] \\ 0.0000 \\ [-0.0017, 0.0014] \\ [-0.0082, 0.0073] \\ 0.0000 \\ [-0.0060, 0.0033] \\ [-0.0206, 0.0131] \end{array}$
$f_{\Lambda 1}$	$\begin{cases} & \text{Approach 1} \\ & f_{a3} = f_{a2} = f_{\Lambda 1}^{Z\gamma} = 0 \\ & \text{Approach 1} \\ & \text{float } f_{a3}, f_{a2}, f_{\Lambda 1}^{Z\gamma} \\ & \text{Approach 2} \\ & \text{float } f_{a3}, f_{a2} \end{cases}$	best fit 68% CL 95% CL best fit 68% CL 95% CL best fit 68% CL 95% CL	$\begin{array}{l} 0.00004 \\ [-0.00002, 0.00022] \\ [-0.00014, 0.00060] \\ 0.18629 \\ [-0.00002, 0.00019] \cup [0.07631, 0.27515] \\ [-0.00523, 0.35567] \\ 0.00012 \\ [-0.00021, 0.00141] \\ [-0.00184, 0.00443] \end{array}$	0.00000 [-0.00016, 0.00026] [-0.00069, 0.00110] 0.00000 [-0.00017, 0.00036] [-0.00076, 0.00134] 0.0000 [-0.0013, 0.0030] [-0.0056, 0.0102]
$f^{Z\gamma}_{\Lambda 1}$	$\left\{ \begin{array}{l} \text{Approach 1} \\ f_{a3}=f_{a2}=f_{\Lambda 1}=0 \\ \\ \text{Approach 1} \\ \text{float } f_{a3}, f_{a2}, f_{\Lambda 1} \end{array} \right.$	best fit 68% CL 95% CL best fit 68% CL 95% CL	$\begin{array}{l} -0.00001 \\ [-0.00099, 0.00057] \\ [-0.00387, 0.00301] \\ -0.02884 \\ [-0.09000, -0.00534] \cup [-0.00068, 0.00078] \\ [-0.29091, 0.03034] \end{array}$	0.0000 [-0.0026, 0.0020] [-0.0096, 0.0082] 0.0000 [-0.0027, 0.0026] [-0.0099, 0.0096]

CMS: <u>Phys. Rev. D 104, 052004 (2021)</u> Higgs 2023

CP structure in HVV+ $H\tau^+\tau^-$

$4l+\tau\tau$

Approach	Parameter	Observe	$d/(10^{-3})$	Expected / (10^{-3})		
		68% CL	95% CL	68% CL	95% CL	
	f_{a3}	$0.20\substack{+0.26 \\ -0.16}$	[-0.01, 0.88]	0.00 ± 0.05	[-0.21, 0.21]	
Approach 1	f_{a2}	$0.7\substack{+0.8 \\ -0.6}$	[-1.0, 2.5]	$0.0\substack{+0.5 \\ -0.4}$	[-1.1, 1.2]	
Approach	$f_{\Lambda 1}$	$-0.04\substack{+0.04\\-0.08}$	[-0.22, 0.16]	$0.00\substack{+0.11 \\ -0.04}$	[-0.11, 0.38]	
	$f^{Z\gamma}_{\Lambda 1}$	$0.7\substack{+1.6 \\ -1.3}$	[-2.7, 4.1]	$0.0^{+1.0}_{-1.0}$	[-2.6, 2.5]	
Approach 2	f_{a3}	$0.28_{-0.23}^{+0.39}$	[-0.01, 1.28]	0.00 ± 0.08	[-0.30, 0.30]	

CMS: Phys. Rev. D 108 (2023) 032013

CP structure in HVV+ $H\tau^+\tau^-$

μ_{gg}	_{gH} =	=1.1068	$8\kappa_{\rm t}^2+0$	0.00	082 - 0.	1150	$0\kappa_{\rm t}+2.572$	$17\widetilde{\kappa}_{\mathrm{t}}^2 + 1.0298$	$(12\pi^2 c_{\rm gg})^2 + 2$	$2.3170(8\pi^2 \tilde{c}_{gg})^2$
$+2.1357(12\pi^2 c_{gg})\kappa_t - 0.1109(12\pi^2 c_{gg}) + 4.8821(8\pi^2 \widetilde{c}_{gg})\widetilde{\kappa}_t.$										
	Parameter			Obs	serv	ed	Expected			
				68	% CL	9	95% CL	68% CL	95% CL	
	-	f_{a3}^{gg}	gΗ	0.0	$7^{+0.32}_{-0.07}$	[-(0.15, 0.89]	0.00 ± 0.26		
		$f_{CI}^{\rm H}$	ltt P	0.0	$3^{+0.17}_{-0.03}$	[-(0.07, 0.51]	0.00 ± 0.12	[-0.49, 0.49]	
	Para	meter	Scenar	rio			68% C	$L / (10^{-2})$	95% CL	$/(10^{-2})$
	C		Profil	od	Observ	ed	$-0.11^{+0.20}_{-0.26}$	$\cup [-1.85, -1.42]$	[-2.12, -1.35]	$\cup [-0.71, 0.36]$
	Ľ	gg I	1 10110	eu	Expecte	ed	$0.00^{+0.18}_{-0.27}$ L	[-1.91, -1.48]	[-2.23	3, 0.37]
	\tilde{c}	Drea Cila	od	Observ	ed	0.00	0 ± 1.29	[-1.79]	9,1.79]	
	L	gg	riomea		Expecte	ed	0.00	0 ± 1.15	[-1.78	8,1.78]
	C	c Fina		Eived Observ		ed	$-0.08\substack{+0.07\\-0.15}$ ($\cup [-1.65, -1.54]$	[-1.71, -1.54]	$\cup [-0.59, 0.05]$
	c_{gg}		Fixed		Expecte	ed	$0.00^{+0.06}_{-0.14}$ L	[-1.73, -1.50]	[-1.78]	3, 0.12]
	\tilde{c}		Fivor	1	Observ	ed	$0.22^{+0.28}_{-0.22}$ ($\cup [-0.50, 0.00]$	[-0.74]	! , 0.75]
ပို့	gg	TIXEU	J	Expecte	ed	0.00	0 ± 0.45	[-0.87]	7,0.87]	
	CMS: Phys. Rev. D 108 (2023) 032013									

CP structure in off-shell HVV

Paramotor	Condition	Observed			Expected		
1 afailleter	Condition	Best fit	68% CL	95% CL	68% CL	95% CL	
	SM-like	3.2	[1.5, 5.6]	[0.5, 8.5]	[0.6, 8.1]	[0.03, 11.3]	
$\Gamma_{}$ (MeV)	f_{a2} (u)	3.4	[1.6, 5.7]	[0.6, 8.4]	[0.5, 8.0]	[0.02, 11.3]	
I H (IMEN)	$f_{a3}(u)$	2.7	[1.3, 4.8]	[0.5, 7.3]	[0.5, 8.0]	[0.02, 11.3]	
	$f_{\Lambda1}$ (u)	2.7	[1.3, 4.8]	[0.5, 7.3]	[0.6, 8.1]	[0.02, 11.3]	
($\Gamma_{\rm H}=\Gamma_{\rm H}^{\rm SM}$	79	[6.6, 225]	[-32, 514]	[-78,70]	[-359, 311]	
J_{a2} (×10)	Γ_{H} (u)	72	[2.7, 216]	[-38,503]	[-82,73]	[-413, 364]	
$f_{a3} (\times 10^5)$	$\Gamma_{\rm H}=\Gamma_{\rm H}^{\rm SM}$	2.2	[-6.4, 32]	[-46,107]	[-55, 55]	[-198, 198]	
	Γ_{H} (u)	2.4	[-6.2, 33]	[-46, 110]	[-58,58]	[-225, 225]	
$f_{\Lambda 1} \left(\times 10^5 \right)$	$\Gamma_{\rm H}=\Gamma_{\rm H}^{\rm SM}$	2.9	[-0.62, 17]	[-11, 46]	[-11,20]	[-47, 68]	
	$\Gamma_{\mathrm{H}}\left(\mathbf{u}\right)$	3.1	[-0.56, 18]	[-10, 47]	[-11,21]	[-48,75]	

CMS: <u>Nat. Phys. 18 (2022) 1329</u>