EFT for (Higgs) bey Jing Shu

Peking University

Contents

Massless amplitude basis

Massive amplitude basis

- Summary

Massless Amplitude Basis

Effective Field Theory

- Effective field theory (EFT) has wide application in physics

```
High energy physics
```

Gravity

Lower energy QCD

Condense matter

- Effective field theory is especially useful in new physics search
Dark matter search

```
Lower energy EFT in
    flavor physics
```

- Null signals of new physics in experiments indicate that new physics scale may be very high

EFTs become important to probe new physics!!!

Challenge in EFT Basis Construction

- Effective field theory

$$
\mathscr{L}_{E F T}=\mathscr{L}_{\text {renormalizable }}+\sum \frac{c_{i}}{\Lambda_{\text {Scale }}^{d-4}} \sigma_{i}^{d}
$$

A complete set of EFT bases

All lower energy effects of any UV theory

- Difficulties in constructing a complete set of operator bases

Eliminate redundancy from the constraints:

Integration by part (IBP)

Unsolved problem in traditional field theory!!!

- Recent progress: Hilbert series technique

2, 84, 30, 993, 560, 15456, 11962, 261485, ...: Higher dimension operators in th SM EFT
Brian Henning (Yale U.), Xiaochuan Lu (UC, Davis), Tom Melia (UC, Berkeley and LBNL, Berkeley), Hitoshi Murayama (UC, Berkeley and LBNL, Berkeley and Tokyo U., IPMU) (Dec 10, 2015)
Published in: JHEP 08 (2017) 016, JHEP 09 (2019) 019 (erratum) • e-Print: 1512.03433 [hep-ph]

Low-derivative operators of the Standard Model effective field theory via Hilbert

Landon Lehman (Notre Dame U.), Adam Martin (Notre Dame U.) (Oct 1, 2015)
Published in: JHEP 02 (2016) 081 • e-Print: 1510.00372 [hep-ph]

On-shell scattering amplitude

Z. Bern, J. Parra-Martinez and E. Sawyer, JHEP 10, 211 (2020) doi:10.1007/JHEP10(2020)211 [arXiv:2005.12917 [hep-ph]].
M. Jiang, T. Ma and J. Shu, [arXiv:2005.10261 [hep-ph]]. J. Elias Miró, J. Ingoldby and M. Riembau, JHEP $\mathbf{0 9} \quad 163 \quad(2020)$ doi:10.1007/JHEP09(2020) 163 [arXiv:2005.06983 [hep-ph]].
P. Baratella, C. Fernandez and A. Po-

- Construct scalar EFT through soft limit

$$
A_{n} \sim p^{\sigma} \quad \text { for } \quad p \rightarrow 0
$$

[^0]I. Low, Phys. Rev. D 91, no.10, 105017 (2015) doi:10.1103/PhysRevD.91.105017 [arXiv:1412.2145 [hepth]].
I. Low, Phys. Rev. D 91, no.11, 116005 (2015) doi:10.1103/PhysRevD.91.116005 [arXiv:1412.2146 [hep$\mathrm{ph}]$].
marol, Nucl. Phys. B 959, 115155 (2020) doi:10.1016/j.nuclphysb.2020.115155 [arXiv:2005.07129 [hep-ph||.

> RG-running

$$
\frac{\mathrm{d} c_{i}(\mu)}{\mathrm{d} \log \mu}=\sum_{j} \frac{1}{16 \pi^{2}} \gamma_{i j} c_{j}
$$

Selection rules

$$
\gamma_{i j}=0
$$

C. Cheung and C. H. Shen, Phys. Rev. Lett. 115, no. 7, 071601 (2015) doi:10.1103/PhysRevLett.115.071601 [arXiv:1505.01844 [hep-ph]].
M. Jiang, J. Shu, M. L. Xiao and Y. H. Zheng,

Introduction of on-shell amplitude

- Massive spinor and its little group (LG) $S U(2)_{i}$

Massive
$\left.\underset{\text { momentum }}{\text { Massive }}\left(p_{i}\right)_{\dot{\alpha} \alpha} \equiv\left(p_{i}\right)_{\mu}\left(\sigma^{\mu}\right)_{\dot{\alpha} \alpha}=\mid i^{I}\right]_{\dot{\alpha}}\left\langle\left. i_{I}\right|_{\alpha}\right.$
Quantum number $S U(2)_{l} \otimes S U(2)_{r} \otimes S U(2)_{i}$
Notrivial EOM $\left.\quad p \mid p^{I}\right]=m\left|p^{I}\right\rangle$
$\left.\left.\mid i^{I}\right]_{\dot{\alpha}}=(1,2,2)\right]\left|i^{I}\right\rangle_{\alpha}=(2,1,2)$

- For massless spinor, its little group is $U(1)_{j}$ SO(3,1) Lorentz

$$
\left.\mid j] \rightarrow e^{-i \theta_{j}} \mid j\right] \quad|j\rangle \rightarrow e^{i \theta_{j}}|j\rangle
$$

- Minimal Lorentz scalar: spinor product

$$
\left.\left.\left.[i j]^{I J} \equiv \epsilon^{\dot{\alpha} \dot{\beta}} \mid i^{I}\right]_{\dot{\beta}} \mid j^{J}\right]_{\dot{\alpha}}, \quad\langle i j\rangle^{I J} \equiv \epsilon^{\alpha \beta}\left|i^{I}\right\rangle_{\beta} \mid j^{J}\right]_{\alpha}
$$

- On-shell scattering amplitudes are the functions of spinor products

$$
\mathscr{M}_{n}=\mathscr{M}_{n}([i j],\langle i j\rangle)
$$

E. Witten, Commun. Math. Phys. 252, 189 (2004)
doi:10.1007/s00220-004-1187-3 [hep-th/0312171].
N. Arkani-Hamed, T. C. Huang and Y. t. Huang, arXiv:1709.04891 [hep-th].

On-shell amplitude basis

- Efficient in constructing EFT operator bases of massless fields

Operator base

Unfactorizable amplitude base
T. Ma, J. Shu and M. L. Xiao, [arXiv:1902.06752 [hepph]].
H. Elvang, D. Z. Freedman and M. Kiermaier, JHEP 1011, 016 (2010) doi:10.1007/JHEP11(2010)016 [arXiv:1003.5018 [hep-th]].
Y. Shadmi and Y. Weiss, arXiv:1809.09644 [hep-ph].

- Massless amplitude base is free of EOMs automatically

$$
\text { Null EOM } \quad p \mid p]=0, \quad p|p\rangle=0
$$

- IBP redundancy can be systematically removed by $\overline{U(\bar{N})} \supset \otimes_{i=1}^{N} U(1)_{i}$
\longleftrightarrow Momentum conservation
The amplitude bases are the basis of some special $U(N)$ representations
B. Henning and T. Melia, Phys. Rev. D 100, no.1, 016015 (2019) doi:10.1103/PhysRevD.100.016015 [arXiv:1902.06754 [hep-ph]].
B. Henning and T. Melia, [arXiv:1902.06747 [hep-th]].
H. L. Li, Z. Ren, J. Shu, M. L. Xiao, J. H. Yu and Y. H. Zheng, [arXiv:2005.00008 [hep-ph]].
- It be constructed by the computer programs (Field theory can not do it!!!)

Massless amplitude basis

Standard Model Effective Field Theory from On-shell Amplitudes Teng Ma, Jing Shu, Ming-Lei Xiao arXiv:1902.06752 [hep-ph].

- Basic structure of massless amplitudes

- An amplitude basis just corresponds to the leading interaction of an operator

$$
F_{\mu \nu} \rightarrow \partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \quad D_{\mu} \rightarrow \partial_{\mu}
$$

The complete amplitude bases of a scattering process can be obtained by finding all its independent unfactorizable amplitudes allowed by LG, gauge symmetry, and spin statistic

Three gluons

$$
\mathcal{M}\left(G^{A+} G^{B+} G^{C+}\right)=[12][23][31] f^{A B C} \quad f^{A B C} G_{\mu \nu}^{A} G_{\nu \rho}^{B} G_{\rho \mu}^{C}
$$

$$
\mathcal{M}\left(G^{A-} G^{B-} G^{C-}\right)=\langle 12\rangle\langle 23\rangle\langle 31\rangle f^{A B C}
$$

$$
f^{A B C} \tilde{G}_{\mu \nu}^{A} G_{\nu \rho}^{B} G_{\rho \mu}^{C}
$$

What is more on $>\operatorname{dim} 6$

- Recent progress: Hilbert series technique.

Massless amplitude basis

- Systematically construct the complete amplitude bases of N external massless particles without IBP via $U(N)$ symmetry

Quantum number under

$$
\begin{aligned}
& \left.\tilde{\lambda}_{\dot{\alpha}}^{k} \equiv \mid k\right]=(1,2, N) \\
& \lambda_{k \alpha} \equiv|k\rangle=(2,1, \bar{N})
\end{aligned}
$$

- A Semi-standard YoungTableau (SSYT) of a $\mathrm{U}(\mathrm{N})$ representation is a polynomial of spinors
$\square_{r} \otimes \sqrt{\frac{i}{j}}=\frac{1}{2!} \epsilon^{\beta \alpha}\left(\tilde{\lambda}_{\dot{\alpha}}^{i} \tilde{\lambda}_{\dot{\beta}}^{j}-\tilde{\lambda}_{\dot{\alpha}}^{j} \tilde{\lambda}_{\dot{\beta}}^{i}\right)=[i j]$
B. Henning and T. Melia, Phys. Rev. D 100, no.1, 016015 (2019) doi:10.1103/PhysRevD.100.016015 [arXiv:1902.06754 [hep-ph]].
B. Henning and T. Melia, [arXiv:1902.06747 [hep-th]].

$$
\begin{aligned}
& =\frac{\left(\epsilon^{i j k_{1} \ldots k_{N-2}}+\operatorname{anti-sym~in~} k_{1 . .} . k_{N-2}\right)}{(N-2)!} \epsilon^{\beta \alpha} \lambda_{i \alpha} \lambda_{j \beta} \\
& =\langle i j\rangle \epsilon^{i j k_{1} \ldots k_{N-2}}
\end{aligned}
$$

Blue column for left-handed spinor product

Two white boxes in a column correspond to a square spinor product
($N-2$) blue boxes in a column correspond to a angle spinor product

Massless amplitude basis

- N-point amplitude bases of massless fields correspond to the bases of the following types of $U(N)$ representations, i.e. SSYTs

Holomorphic bases with n right-handed spinors

Non-holomorphic bases with n right-handed spinor and \tilde{n} left-handed spinors

Massless amplitude basis

The amplitude bases contain n right-handed spinors and \tilde{n} left-handed spinors

The white and blue box column number is $n / 2$ and $\tilde{n} / 2$
Examples: $N=4$ case:

$$
\psi_{1 R} \psi_{2 R} \psi_{3 R} \psi_{4 R}:(n, \tilde{n})=(4,0) \quad \text { White column number is: } n / 2=2
$$

1	3
2	4

$$
\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline
\end{array}
$$

$\psi_{1 L} \psi_{2 L} \psi_{3 L} \psi_{4 L}:(n, \tilde{n})=(0,4) \quad$ Blue column number is: $\tilde{n} / 2=2$

Blue column length: $N-2=2$	1	3			
2	4		\quad	1	2
:---:	:---:				
3	4	$=\langle 13\rangle\langle 24\rangle+\langle 14\rangle\langle 23\rangle$			

$\psi_{1 R} \psi_{2 R} \psi_{3 L} \psi_{4 L}:(\tilde{n}, n)=(2,2) \quad$ Blue and white column: $n / 2=1 ; \tilde{n} / 2=1$

$$
\begin{array}{|l|l|}
\hline 1 & 1 \\
\hline 2 & 2 \\
\hline
\end{array}=\langle 34\rangle[12]
$$

Massive Amplitude Basis

Massive Effective Field Operator

- EFT of massive fields has wide application in particle physics

```
Higgs EFT \(\supset\) SMEFT \(\supset\) SM
```


Dark matter EFT

Lower energy QCD

Lower energy EFT

- Massless EFT is not concise in describing physics at EWSB

- Massive fields amplitude base construction is very challenge
Redundancy:
Equation of motion
Notrivial EOM $\left.p \mid p^{I}\right]=m\left|p^{I}\right\rangle$

Integration by part

G. Durieux, T. Kitahara, Y. Shadmi and Y. Weiss, JHEP 01, 119 (2020) doi:10.1007/JHEP01(2020)119 [arXiv:1909.10551 [hep-ph]].

How to solve it?

Massive amplitude basis

- The scattering amplitude can be factorized in two parts:
$\left.\underset{n \text { massless }}{m \text { massive }} \quad \mathscr{M}_{m, n}^{I}=\sum_{\{\dot{\alpha}\}} \mathscr{A}_{\substack{\text { Massive LG } \\ \text { charged }}}^{I}\left(\left\{\epsilon_{s_{i}}\right\}\right) G^{\{\dot{\alpha}\}}(\mid j],|j\rangle, p_{i}\right)$
- Massive LG tensor structure (MLGTS) $\mathscr{A}^{I}\left(\left\{\epsilon_{s_{i}}\right\}\right)$ is required to be the holomorphic function of $\left.\mid i^{I}\right]$ s
$\left(\right.$ EOM $\left.\left.\left|i^{I}\right\rangle=p_{i} \mid i^{I}\right] / m_{i}\right)$
Linear in massive polarization tensor

$$
\left.\left.\epsilon_{s_{i}} \equiv \mid i\right]_{\dot{\alpha}_{1}}^{\left\{I_{1}\right.}, \ldots, \mid i\right]_{\dot{\alpha}_{2 s_{i}}}^{\left.I_{2 s_{i}}\right\}} \in\left(2 s_{i}+1,2 s_{i}+1\right)=S U(2)_{i} \otimes S U(2)_{r}
$$

$\mathscr{A}^{I}\left(\left\{\epsilon_{s_{i}}\right\}\right)$ can not be EOM and IBP redundant!

- Massive LG neutral structure (MLGNS) $\left.G(\mid j],|j\rangle, p_{i}\right)$ is the function of massless spinors $\mid j],|j\rangle$ and massive momentum p_{i}

$$
\left.G(\mid j],|j\rangle, p_{i}\right) \text { can be both EOM and IBP redundant! }
$$

Massive amplitude basis

$\left.\underset{n_{\text {massless }}}{m \text { massive }} \mathscr{M}_{m, n}^{I}=\sum_{\{\dot{\alpha}\}} \mathscr{A}_{\{\dot{\alpha}\}}^{I}\left(\left\{\epsilon_{s_{i}}\right\}\right) G^{\{\dot{\alpha}\}}(\mid j],|j\rangle, p_{i}\right)$

Constructing on-shell operator basis for all masses and spins
Zi-Yu Dong, Teng Ma, Jing Shu
arXiv:2103.15837 [hep-ph].

- The general framework to construct a complete set of massive amplitude bases

Massive amplitude basis

- MLGTS basis $\mathscr{A}^{I}\left(\left\{\epsilon_{s_{i}}\right\}\right)$ is the linear function of polarization tensor $\epsilon_{s_{i}}$

$$
\left.\left.\epsilon_{s_{i}} \equiv \mid i\right]_{\dot{\alpha}_{1}}^{\left\{I_{1}\right.}, \ldots, \mid i\right]_{\dot{\alpha}_{2 s_{i}}}^{\left.I_{2 s_{i}}\right\}} \sim \underbrace{\boxed{i} \cdots i_{r}}_{\left(2 s_{i}\right)}
$$

$\left(2 s_{i}+1\right) S U(2)_{r}$ Rep of $\epsilon_{s_{i}}$

- Any MLGTS basis belongs to the out product of all $\epsilon_{s_{i}}$'s $S U(2)_{r}$ Reps

- A complete set of $\left\{\mathscr{A}_{\dot{\alpha}}^{I}\right\}$ bases can be constructed by finding all the $S U(2)_{r}$ irreducible representations from the out product of all $\epsilon_{s_{i}}$'s $S U(2)_{r}$ Reps

Massive amplitude basis

For example: $\psi \psi^{\prime} Z h$

$$
\psi \sim \boxed{1} \quad \psi^{\prime} \sim \boxed{2} \quad Z \sim \boxed{3} 3 \quad h \sim \bullet
$$

$$
\begin{aligned}
& \mathcal{A}_{\{\dot{\alpha}\}}^{I}\left(\left\{\epsilon_{s_{i}}\right\}\right) \subset \quad 1 \times 2 \times 3 \times 3 \times \bullet \\
& =\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 3
\end{array} \oplus \begin{array}{|c|c|c|}
\hline 1 & 2 & 3 \\
\hline 3 &
\end{array} \oplus \begin{array}{|l|l|l|}
\hline 1 & 3 & 3 \\
\hline 2 & & \begin{array}{|l|l|l|l|}
\hline 1 & 2 & 3 & 3 \\
\hline
\end{array} \\
\hline
\end{array}
\end{aligned}
$$

- The MLGTS can be read from above SSYTs. For the first one SSYT

$$
\begin{aligned}
\mathcal{A}_{[2,2]}^{I} \equiv \begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 3 \\
\hline
\end{array} & \left.\left.\left.\left.=\left(\mid 1^{I}\right]_{\dot{\alpha}} \mid 2^{J}\right]_{\dot{\beta}} \mid 3^{K_{1}}\right]_{\dot{\gamma}_{1}} \mid 3^{K_{2}}\right]_{\dot{\gamma}_{2}}+\text { perms in } S U(2)_{r} \text { indices }\right) \\
& =\left[1^{I} 3^{\left\{K_{1}\right.}\right]\left[2^{J} 3^{\left.K_{2}\right\}}\right]
\end{aligned}
$$

Massive amplitude basis

- MLGNS $\left.G(\mid j],|j\rangle, p_{i}\right)$ is the function of massless spinors $\left.\mid j\right],|j\rangle$ and massive momentum p_{i}
- MLGNS $\left.G(\mid j],|j\rangle, p_{i}\right)$ bases suffer from EOM and IBP redundancy
- EOM redundancy can be removed by first constructing $\left.G(\mid j],|j\rangle, p_{i}\right)$ massless limit bases

Construct
massless limits

$$
\left.\left.\left.\left.p_{i, \dot{\alpha} \alpha} \rightarrow \mid i\right]_{\dot{\alpha}}\left\langle\left. i\right|_{\alpha}: G(\mid j], \mid j\right\rangle, p_{i}\right) \rightarrow g \equiv G(\mid j],|j\rangle, \mid i\right]\langle i|\right)
$$

- IBP redundancy can be removed by $U(N)$ symmetry

Massive amplitude basis

- The general framework to construct a complete set of massive amplitude bases

The amplitude bases constructed by this procedure are independent without any redundancy !!

Massive amplitude basis

- Example $W^{+}-W^{-}-Z$ amplitude bases

$$
\begin{aligned}
& \text { MLGTS } \mathcal{A}_{\{\dot{\alpha}\}}^{I}\left(\left\{\epsilon_{s_{i}}\right\}\right) \subset \quad 11 \times \times 2|2 \times 3| 3
\end{aligned}
$$

$$
\begin{aligned}
& \equiv \mathcal{A}_{[3,3]}^{I} \oplus \mathcal{A}_{\left[(4,2)^{1}\right]}^{I} \oplus \mathcal{A}_{\left[(4,2)^{2}\right]}^{I} \oplus \mathcal{A}_{\left[(4,2)^{3}\right]}^{I} \\
& \oplus \mathcal{A}_{\left[(5,1)^{1}\right]}^{I} \oplus \mathcal{A}_{\left[(5,1)^{2}\right]}^{I} \oplus \mathcal{A}_{[6]}^{I}
\end{aligned}
$$

- Total seven $W^{+}-W^{-}-Z$ amplitude bases

$$
\begin{aligned}
\mathcal{A}_{[3,3]}^{I} & : G_{d=0}^{\bullet}=1 \\
\mathcal{A}_{\left[(4,2)^{1,2,3]}\right.}^{I} & : G_{d=2}^{[3]}=\begin{array}{|l|l|l|}
1 & 2 & 3 \\
\hline
\end{array} \\
\mathcal{A}_{\left[(5,1)^{1,2]}\right.}^{I} & : G_{d=4}^{[6]}=\begin{array}{l|l|l|l|l|l|}
1 & 1 & 2 & 2 & 3 & 3 \\
\hline
\end{array} \\
\mathcal{A}_{[6]}^{I} & : G_{d=6}^{[9]}=\begin{array}{l|l|l|l|l|l|l|l|l|}
1 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3
\end{array}
\end{aligned}
$$

Blue column length:

$$
N-2=1
$$

\square

Trivial kinetic

$$
2 p_{i} \cdot p_{j}=\left(\epsilon_{i j k} m_{k}\right)^{2}-m_{i}^{2}-m_{j}^{2}
$$

G. Durieux, T. Kitahara, Y. Shadmi and Y. Weiss, JHEP 01, 119 (2020) doi:10.1007/JHEP01(2020)119 [arXiv:1909.10551 [hep-ph]].

Computer Programs

- Massive EFT operators construction can be automatically done by computer programs: https://github.com/hamiguazzz/Massive
Z.-Y. Dong, T. Ma, J. Shu, and Z.-Z. Zhou, The New Formulation of Higgs Effective

Field Theory, (2022), arXiv:2211.16515 [hep-ph].
A. 91 Type: $Z Z Z Z$
A.91.1 Dimension $=4, \mathcal{O}_{4}^{1}$

| Type: $Z Z Z Z \quad d=4 \quad \mathcal{O}_{4}^{1}$ |
| :---: | :---: |
| $Z_{\mu} Z_{\nu} Z_{\rho} Z_{\sigma} \operatorname{Tr}\left(\sigma^{\mu} \bar{\sigma}^{\rho}\right) \operatorname{Tr}\left(\sigma^{\nu} \bar{\sigma}^{\sigma}\right)$ |

A.91.2 Dimension $=6, \mathcal{O}_{6}^{1 \sim 4}$

Type: $Z Z Z Z \quad d=6 \quad \mathcal{O}_{6}^{1 \sim 4}$
$Z_{\mu} Z_{\nu} Z_{\rho \sigma}^{+} Z_{\xi \tau}^{+} \operatorname{Tr}\left(\sigma^{\mu} \sigma^{\nu} \bar{\sigma}^{\xi \tau} \bar{\sigma}^{\rho \sigma}\right)$
$Z_{\mu \nu}^{-} Z_{\rho} Z_{\sigma} Z_{\xi \tau}^{+} \operatorname{Tr}\left(\sigma^{\rho} \sigma^{\mu \nu} \sigma^{\sigma} \bar{\sigma}^{\xi \tau}\right)$
$Z_{\mu \nu}^{-} Z_{\rho \sigma}^{-} Z_{\xi} Z_{\tau} \operatorname{Tr}\left(\sigma^{\xi} \sigma^{\mu \nu} \sigma^{\rho \sigma} \bar{\sigma}^{\tau}\right)$
$\left(D_{\mu} Z_{\rho}\right) Z_{\sigma}\left(D_{\nu} Z_{\xi}\right) Z_{\tau} \operatorname{Tr}\left(\sigma^{\sigma} \bar{\sigma}^{\mu} \sigma^{\xi} \bar{\sigma}^{\tau}\right) \operatorname{Tr}\left(\bar{\sigma}^{\nu} \sigma^{\rho}\right)$

A. 86 Type: $Z Z \gamma^{+} \gamma^{-}$
A.86.1 Dimension $=6, \mathcal{O}_{6}^{1}$

$$
\begin{aligned}
& \text { Type: } Z Z \gamma^{+} \gamma^{-} \quad d=6 \quad \mathcal{O}_{6}^{1} \\
& Z_{\mu} Z_{\nu} \gamma_{\rho \sigma}^{+} \gamma_{\xi \tau}^{-} \operatorname{Tr}\left(\sigma^{\mu} \sigma^{\xi \tau} \sigma^{\nu} \bar{\sigma}^{\rho \sigma}\right)
\end{aligned}
$$

A.86.2 \quad Dimension $=8, \mathcal{O}_{8}^{1 \sim 4}$

Type: $Z Z \gamma^{+} \gamma^{-} \quad d=8 \quad \mathcal{O}_{8}^{1 \sim 4}$
$Z_{\mu \nu}^{-} Z_{\rho \sigma}^{+} \gamma_{\xi \tau}^{+} \gamma_{\zeta \eta}^{-} \operatorname{Tr}\left(\bar{\sigma}^{\rho \sigma} \bar{\sigma}^{\xi \tau}\right) \operatorname{Tr}\left(\sigma^{\mu \nu} \sigma^{\zeta \eta}\right)$
$Z_{\nu \rho}^{-} Z_{\sigma} \gamma_{\xi \tau}^{+}\left(D_{\mu} \gamma_{\zeta \eta}^{-}\right) \operatorname{Tr}\left(\sigma^{\sigma} \sigma^{\zeta \eta} \sigma^{\nu \rho} \bar{\sigma}^{\mu} \bar{\sigma}^{\xi \tau}\right)$
$Z_{\nu} Z_{\rho \sigma}^{+}\left(D_{\mu} \gamma_{\xi \tau}^{+}\right) \gamma_{\zeta \eta}^{-} \operatorname{Tr}\left(\bar{\sigma}^{\mu} \sigma^{\zeta \eta} \sigma^{\nu}\right) \operatorname{Tr}\left(\bar{\sigma}^{\rho \sigma} \bar{\sigma}^{\xi \tau}\right)$
$Z_{\rho}\left(D_{\nu} Z_{\sigma}\right) \gamma_{\xi \tau}^{+}\left(D_{\mu} \gamma_{\zeta \eta}^{-}\right) \operatorname{Tr}\left(\sigma^{\rho} \sigma^{\mu} \bar{\sigma}^{\nu} \sigma^{\zeta \eta} \sigma^{\sigma} \bar{\sigma}^{\xi \tau}\right)$

Massless EFT VS Massive EFT

- Map SMEFT bases to HEFT bases

SMEFT bases

$$
\mathcal{A}\left(H^{i} H_{k}^{\dagger} H^{j} H_{l}^{\dagger}\right) \supset c_{H H H H}^{+} \frac{s_{13}}{\Lambda^{2}} T^{+i j}+{c_{H H H H}^{-}}_{s_{12}-s_{14}}^{\Lambda^{2}} T^{-i j}{ }_{k l}
$$

HEFT bases

$$
\boldsymbol{\mathcal { M }}\left(W^{+} W^{-} h h\right)=C_{6, W W h h}^{00} \frac{[\mathbf{1 2}]\langle\mathbf{1 2}\rangle}{\Lambda^{2}}
$$

Just bold the spinors

$$
\begin{aligned}
\mathcal{A}\left(G^{+} G^{-} h h\right)= & \frac{1}{2}\left(\mathcal{A}\left(H^{1} H_{1}^{\dagger} H^{2} H_{2}^{\dagger}\right)+\mathcal{A}\left(H^{1} H_{1}^{\dagger} H_{2}^{\dagger} H^{2}\right)\right)=-\frac{c_{\left(H^{\dagger} H\right)^{2}}^{+}-3 c_{\left(H^{\dagger} H\right)^{2}}^{-}}{2} \frac{s_{12}}{2 \Lambda^{2}} \\
& -\frac{c_{\left(H^{\dagger} H\right)^{2}}^{+}-3 c_{\left(H^{\dagger} H\right)^{2}}^{-}}{2} \frac{s_{12}}{2 \Lambda^{2}} \longrightarrow \frac{c_{\left(H^{\dagger} H\right)^{2}}^{+}-3 c_{\left(H^{\dagger} H\right)^{2}}^{-}}{2} \frac{[\mathbf{1 2}]\langle\mathbf{1 2}\rangle}{\Lambda^{2}}
\end{aligned}
$$

An EFT hunter's guide to two-to-two scattering: HEFT and SMEFT on-shell amplitudes
Hongkai Liu (Technion), Teng Ma (Technion and Barcelona, IFAE and BIST, Barcelona), Yael Shadmi (Technion), Michael
Waterbury (Technion) (Jan 26, 2023)
Published in: JHEP 05 (2023) 241 • e-Print: 2301.11349 [hep-ph]

Summary

A complete set of amplitude bases can be efficiently constructed by $S U(2)_{l} \times S U(2)_{r} \times U(N)$ representations
I. The operators beyond dim=6 can be easily formulated by using the onshell amplitude methods + the SU(N) Young Tablet.
D. Based on our theory, EFT operators of any massless \& massive fields can be automatically constructed by computer programs

Using on-shell method, SMEFT can be easily mapped into HEFT

Thanks !!

Back up

Summary

The N-point scattering amplitude involving massive fields can be factorized in two parts

$$
\left.\mathscr{M}_{m, n}^{I}=\sum_{\{\dot{\alpha}\}} \mathscr{A}_{\substack{\text { Massive LG } \\ \text { charged }}}^{I}\left(\left\{\epsilon_{s_{i}}\right\}\right) G^{\{\dot{\alpha}\}}(\mid j],|j\rangle, p_{i}\right)
$$

IJ \mathscr{A}^{I} bases can be constructed by Lorentz subgroup $S U(2)_{r}$ representations

D G bases can be constructed by global $U(N)$ representations
【] The N-point amplitude bases involving massive fields can be obtained by contracting \mathscr{A}^{I} and G bases

Computer Programs

- Massive EFT operators construction can be automatically done by computer programs

4-Z operator bases at dim-4 and 6
73 Type: ZZZZ
73.1 Dimension 4, \mathcal{O}_{4}^{1}

$$
Z_{\mu} Z_{\nu} Z_{\rho} Z_{\sigma} \operatorname{Tr}\left(\sigma^{\mu} \bar{\sigma}^{\rho}\right) \operatorname{Tr}\left(\sigma^{\nu} \bar{\sigma}^{\sigma}\right)
$$

73.2 Dimension 6, $\mathcal{O}_{6}^{1 \sim 4}$

$$
\begin{gathered}
Z_{\mu} Z_{\nu \rho}^{+} Z_{\sigma} Z_{\xi \tau}^{+} \operatorname{Tr}\left(\sigma^{\mu} \bar{\sigma}^{\sigma}\right) \operatorname{Tr}\left(\bar{\sigma}^{\nu \rho} \bar{\sigma}^{\xi \tau}\right) \\
Z_{\mu \nu}^{-} Z_{\rho} Z_{\sigma} Z_{\xi \tau}^{+} \operatorname{Tr}\left(\sigma^{\mu \nu} \sigma^{\sigma}\right) \operatorname{Tr}\left(\sigma^{\rho}\right) \operatorname{Tr}\left(\bar{\sigma}^{\xi \tau}\right) \\
Z_{\mu \nu}^{-} Z_{\rho \sigma}^{-} Z_{\xi} Z_{\tau} \operatorname{Tr}\left(\sigma^{\mu \nu} \sigma^{\rho \sigma}\right) \operatorname{Tr}\left(\sigma^{\xi} \bar{\sigma}^{\tau}\right) \\
Z_{\nu \rho}^{-} Z_{\sigma} Z_{\xi}\left(D_{\mu} Z_{\tau}\right) \operatorname{Tr}\left(\bar{\sigma}^{\mu} \sigma^{\nu \rho} \sigma^{\xi}\right) \operatorname{Tr}\left(\sigma^{\sigma} \bar{\sigma}^{\tau}\right)
\end{gathered}
$$

Dimension Reduction of Massive Amplitude Basis

- The $\{\mathscr{A} . G\}$ bases can not be directly mapped into operator bases due to their dimension mismatch

For example: 4-pt $\psi_{1} \psi_{2} \phi_{1} \phi_{2}$ has two dim-5 operator bases

$$
\operatorname{dim}-5=\left\{\left[1^{I} 2^{J}\right],\left\langle 1^{I} 2^{J}\right\rangle\right\}
$$

Since the polarization tensors of $\{\mathscr{A} . G\}$ bases are holomorphic functions of $\left.\mid i^{I}\right]$, $\{\mathscr{A} . G\}$ can not contain the bases with $\left|i^{I}\right\rangle$ s in polarization tensors

> Combination
> of $\{\mathscr{A} \cdot G\}$

$$
\left\langle 1^{I} 2^{J}\right\rangle=\frac{m_{2}\left[1^{I} 2^{J}\right]}{m_{1}}+\frac{\left[1^{I} 322^{J}\right]}{m_{1} m_{2}}+\frac{\left[1^{I} 422^{J}\right]}{m_{1} m_{2}}
$$

$\{\mathscr{A} \cdot G\}$ can not directly contain two polarization tensors of massive gauge boson

$$
\left.\left.\left.F_{\dot{\alpha} \dot{\beta}}^{+}=\mid i^{I_{1}}\right] \mid i^{I_{2}}\right] \quad F_{\dot{\alpha} \beta}^{0}=m A_{\mu}=\left|i^{I_{1}}\right\rangle \mid i^{I_{2}}\right] \quad F_{\alpha \beta}^{-}=\left|i^{I_{1}}\right\rangle\left|i^{I_{2}}\right\rangle
$$

- The key problem: spinor $\left|i^{I}\right\rangle$ in polarization tensor is expressed by $\left.p_{i} \mid i^{I}\right]$ in $\{\mathscr{A} . G\}$ that makes their dimension higher

Dimension Reduction of Massive Amplitude Basis

- We should find a complete set of lowest dimensional amplitude bases that can directly map into physical operators
- Lowest dimensional amplitude bases means that their dimension can not be reduced further by EOM $\left.p_{i} \mid i^{I}\right] / m_{i}=\left|i^{I}\right\rangle$

Constructing Generic Effective Field Theory for All Masses and Spins Zi-Yu Dong, Teng Ma, Jing Shu, Yu-Hui Zheng arXiv:2202.08350 [hep-ph].

- Step one: construct a redundant and complete set of amplitude bases $\{\mathscr{C} . F\}$ that can always contain a complete set of lowest dimensional amplitude bases
- Step two: decompose this redundant $\{\mathscr{C} . F\}$ bases into $\{\mathscr{A} . G\}$ bases from low to high dimension and remove the linear correlation bases

Decompose
Linear correlation

Dimension Reduction of Massive Amplitude Basis

- $\{\mathscr{A} . G\}$ bases are complicated and long polynomials of spinor products due to horizontal permutations in their SSYTs
- For decomposition convenience, monomial bases $\{\mathscr{B} . H\}$ can be constructed from $\{\mathscr{A} \cdot G\}$ SSYTs without horizontal permutations

$$
\{\mathscr{B} . H\}
$$

- The simplified bases $\{\mathscr{B} . H\}$ are just monomials of spinor products

For example: $\psi_{1} \psi_{2} \phi_{1} \phi_{2} \operatorname{dim-7}\{\mathscr{B} . H\}$

Dimension Reduction of Massive Amplitude Basis

- Any polynomials of spinor product can be decomposed into $\{\mathscr{B} . H\}$ basis space systematically

Dimension Reduction of Massive Amplitude Basis

How to systematically construct redundant $\{\mathscr{C}, F\}$ bases that contain a complete set of lowest dimensional amplitude bases???

- All the possible amplitude bases can be classified by a set of massive polarization tensor configurations $\left\{\ldots, \epsilon_{s_{i}}^{l_{i}}, \epsilon_{s_{i+1}}^{l_{i+1}}, \ldots\right\}$

Polarization tensor of massive particle-i with spin- S_{i}

$$
\left.\left.\epsilon_{s_{i}}^{l_{i}} \equiv \mid\left(i^{I}\right\rangle\right)^{l_{i}}\left(\mid i^{I}\right]\right)^{2 s_{i}-l_{i}}, 0 \leq l_{i} \leq 2 s_{i}
$$

Different value of l_{i} represent different polarization tensor configuration

- A complete set of bases $\{\mathscr{C}, F\}^{\left\{\ldots, l_{i}, l_{i+1}, \ldots\right\}}$ with one kind of polarization tensor configuration $\left\{\ldots, \epsilon_{s_{i}}^{l_{i}}, \epsilon_{s_{i+1}}^{l_{i+1}}, \ldots\right\}$ can be constructed by $S U(2)_{r} \times U(N)$ SSYTs
- $\{\mathscr{C}, F\}$ bases consist of all sets with different polarization configurations $\{\mathscr{C} . F\}^{\left\{\ldots, l_{i}, l_{i+1}, \ldots\right\}}, \ldots, 0 \leq l_{i} \leq 2 s_{i}, \ldots$

$$
\left.\mathscr{C} . F=\sum_{\left\{\ldots, l_{i}, l_{j}, \ldots\right\}}^{34}<\substack{\ldots \leq l_{i} \leq 2 s_{i}, \ldots}\{\mathscr{C} . F\}^{\left\{\ldots, l_{i}, l_{j}, \ldots\right\}}\right\}
$$

Dimension Reduction of Massive Amplitude Basis

Decompose the over redundant $\{\mathscr{C}, F\}$ bases into $\{\mathscr{B} . H\}$ from low to high dimension

Replace p_1

Remove all the linear correlation bases

Example

- For example: $\psi_{1} \psi_{2} \phi_{1} \phi_{2}$ bases at dim-5, 6, 7

Construct $\{\mathscr{B}, H\}$ bases at dim-5, 7

$$
\begin{aligned}
& \left.\begin{array}{|l|l|l|}
\hline 1 & 3 & 4 \\
\hline 2 & 2^{\prime} & 1^{\prime}
\end{array}, \begin{array}{|l|l|l|}
\hline 1 & 3 & 2^{\prime} \\
\hline 2 & 4 & 1^{\prime}
\end{array}\right\} \\
& =\left\{m_{2}[132\rangle, m_{2}[142\rangle, s_{24}[12],[1432], s_{34}[12]\right\}
\end{aligned}
$$

Construct $\{\mathscr{C}, F\}$ bases at dim-5, 6, 7

$$
\{\mathscr{C} \cdot \boldsymbol{F}\}_{5}^{0000},\{\mathscr{C} \cdot \boldsymbol{F}\}_{5}^{1100},\{\mathscr{C} \cdot \boldsymbol{F}\}_{6}^{0100},\{\mathscr{C} \cdot \boldsymbol{F}\}_{6}^{1000}\{\mathscr{C} \cdot \boldsymbol{F}\}_{7}^{0000}
$$

Remove all the linear correlation bases
$\{\mathcal{C} \cdot F\}_{5}$ $\{\mathcal{C} \cdot F\}_{6}$ $\{\mathcal{C} \cdot F\}_{7}$

Lowest dimension bases at dim-5, 6, 7
$\{[12],\langle 12\rangle\}$, $\{[132\rangle,\langle 132]\}$,
$\left\{s_{24}[12], s_{34}[12], s_{34}\langle 12\rangle,\langle 1342\rangle\right\}$

Summary

A set of $\{\mathscr{C} . F\}$ bases that can always contain a complete set of lowest dimensional amplitude bases can be constructed by $S U(2)_{r} \times U(N)$ representations

The lowest dimensional amplitude bases can be obtained by decomposing $\{\mathscr{C} . F\}$ into the independent $\{\mathscr{B} . H\}$ bases

『The lowest dimensional amplitude bases can be directly mapped into EFT operators

IJ Based on this method, different types of EFT involving massive fields can be constructed by computer programs, like DM EFT, HEFT

Identical Particles

- For n identical bosons (fermions), the amplitude bases should be totally (ant-) symmetric under these bosons permutation
- For example

For three identical bosons, the amplitude bases should be in | 1 | 2 | 3 |
| :--- | :--- | :--- | representation of permutation symmetry S_{3}

- First, find $1|2| 3$ representation matrix in the space of amplitude bases $\{\mathcal{O}\}$

$$
\mathcal{Y}_{\boxed{1|2| 3}}\{\mathcal{O}\}=M_{\boxed{1|2| 3}}\{\mathcal{O}\}
$$

Find $M_{\boxed{1|2| 3}}$ eigenvectors with non-zero eigenvalues and these eigenvectors are the amplitude bases in 1233 representation

Lowest dimensional massive amplitude basis

On-shell amplitude basis

- IBP redundancy can be removed by $U(\bar{N}) \supset \otimes_{i=1}^{N} U(1)_{i}$ symmetry $f^{(n, \widetilde{n})}(\{\lambda, \widetilde{\lambda}\})=\left(\bar{g}_{U(N)} \otimes g_{U(N)}\right)$

- The amplitude basis is the basis of the first $\mathrm{U}(\mathrm{N})$ representation
- The computer programs can construct massless basis based on it

EFT

Null new physics signals at the detections on ground

precision
 measurement

$$
\Lambda \gg \mathcal{O}(1) \mathrm{TeV} \longrightarrow \delta g=g_{\text {exp }}-g_{S M} \Leftrightarrow \mathcal{O}_{d \geq 4}
$$

Dark matter detections

$$
\begin{gathered}
\mathcal{O}_{D M} \sim e e \phi_{D M} \phi_{D M} \\
\left.\{\mathscr{C} . F\}^{\left\{l_{i}, l_{j}, \ldots\right\}} \equiv \mathscr{C}\left(\left|i^{\left.\left.\left.I_{1}\right] \cdots \mid i^{I_{s_{i}-i}}\right]\right) \cdot F\left(\left|i^{I_{s_{i}-i} i_{i}+1}\right\rangle \cdots\left|i^{I_{s_{i}}}\right\rangle\right.}\right\rangle, p_{i}, \mid j\right],|j\rangle\right)
\end{gathered}
$$

Higher spin particles

$$
\mathcal{O} \sim\left(D_{\mu_{1}} e\right) \gamma_{\mu_{2}} \gamma_{\mu_{3}} e \rho^{\mu_{1} \mu_{2} \mu_{3}}
$$

Massless amplitude basis

Basic structure of massless amplitudes ${ }^{\text {T. Ma, J. Shu and M. L. Xiao, [arXiv:1902.06752 hep- }}$

- An amplitude basis just corresponds to the leading interaction of a operator
- IBP redundancy can be systematically removed by $U(\bar{N}) \supset \otimes_{i=1}^{N} U(1)_{i}$

Quantum number under $S U(2)_{r} \otimes U(N)$

$$
\left.\lambda_{\alpha}^{k} \equiv \mid k\right]=(2, N)
$$

Quantum number under $\operatorname{SU}(2)_{l} \otimes U(N)$

$$
\tilde{\lambda}_{k \dot{\alpha}} \equiv|k\rangle=(2, \bar{N})
$$

$$
\begin{aligned}
& \hline i=\left(\tilde{\lambda}_{\dot{\alpha}}^{i} \tilde{\lambda}_{\dot{\beta}}^{j}-\tilde{\lambda}_{\dot{\alpha}}^{j} \tilde{\lambda}_{\dot{\beta}}^{i}\right)=[i j] \\
& \hline j=\frac{\left(\epsilon^{i j k_{1} \ldots k_{N-2}}+\operatorname{anti-sym} \text { in } k_{1} . . k_{N-2}\right)}{(N-2)!} \lambda_{i \alpha} \lambda_{j \beta} \\
& \hline \cdot k_{1} \\
& \hline \cdot k_{N-2} \\
&=\langle i j\rangle \epsilon^{i j k_{1} \ldots k_{N-2}}
\end{aligned}
$$

Problems in massless amplitude basis

- Massless amplitude basis is fail at EWSB phase
G. Durieux, T. Kitahara, Y. Shadmi and Y. Weiss, JHEP 01, 119 (2020) doi:10.1007/JHEP01(2020)119 [arXiv:1909.10551 [hep-ph]].
G. Durieux, T. Kitahara, C. S. Machado, Y. Shadmi and Y. Weiss, JHEP 12, 175 (2020)
- Troublesome in calculation at EWSB phase doi:10.1007/JHEP12(2020)175 [arXiv:2008.09652 [hepph]].
A. Falkowski, G. Isabella and C. S. Machado,

$$
\mathcal{M}_{0} \rightarrow \mathcal{O} \quad\langle H\rangle \neq 0
$$

- Massless EFT is not concise in describing physics at EWSB

$$
\begin{aligned}
& \quad W^{+}-\dot{W}^{-}-Z \\
& \text { Three massive gauge } \\
& \text { bosons } \\
& \left(W_{\mu \nu}^{a}\right)^{3}|H|^{2 n} \\
& \text { Infinite massless operator bases }
\end{aligned}
$$

- Massive EFT is more useful and convenient at EWSB phase, studying higher spin parties and DM

Dimension Reduction of Massive Amplitude Basis

How to systematically construct redundant $\{\mathscr{C}, F\}$ bases that contain a complete set of lowest dimensional amplitude bases???

- All the possible amplitude bases can be classified by polarization tensor configurations $\left.\left.\left\{\mid\left(i^{I}\right\rangle\right)^{l_{i}}\left(\mid i^{I}\right]\right)^{2 s_{i}-l_{i}}\right\}$ of massive particle-i with spin- $s_{i}, \quad 0 \leq l_{i} \leq 2 s_{i}$
- Construct a complete set of bases $\{\mathscr{C}, F\}^{\left\{\ldots, l_{i}, l_{j}, \ldots\right\}}$ with one kind of polarization tensor configuration $\left.\left(\left|i^{I}\right\rangle\right)^{l_{i}}\left(\mid i^{I}\right]\right)^{2 s_{i}-l_{i}}$ for massive particle-i with spin- s_{i} by $S U(2) \times U(N)$ SSYTs
- $\{\mathscr{C}, F\}$ bases consist of all $\{\mathscr{C} . F\}^{\left\{\ldots, l_{i}, l_{j}, \ldots\right\}}, 0 \leq l_{i} \leq 2 s_{i}, \ldots$

$$
\mathscr{C} \cdot F=\sum_{\left\{\ldots, l_{i}, l_{j}, \ldots\right\}}\left\{\{\mathscr{C} . F\}^{\left\{\ldots, l_{i}, l_{j}, \ldots\right\}}\right\}
$$

Massive amplitude basis

- Independence proof:

Case I: two bases with two different $\mathscr{A}^{I}\left(\left\{\epsilon_{s_{i}}\right\}\right)$ bases

Different massive LG tensor

$$
\left.\left.\mathcal{A}_{[\lambda]}^{I} \cdot G(\mid j],|j\rangle, p_{i}\right) \neq \mathcal{A}_{\left[\lambda^{\prime}\right]}^{I} \cdot G^{\prime}(\mid j],|j\rangle, p_{i}\right), \lambda \neq \lambda^{\prime}
$$

Case II: bases with the same $\mathscr{A}^{I}\left(\left\{\epsilon_{S_{i}}\right\}\right)$ bases

$$
\begin{aligned}
& \mathcal{A}_{[\lambda]}^{I} \cdot\left(\sum_{n} Z_{[\eta]} G_{d}^{[\eta]}+\sum_{i . n^{\prime}} Z_{i\left[\eta^{\prime}\right]} m_{i}^{2} G_{d-2}^{\left[\eta^{\prime}\right]}+\cdots\right)=0 \\
& \sum_{\eta} Z_{[\eta]} G_{d}^{[\eta]}+\sum_{i, \eta^{\prime}} Z_{i\left[\eta^{\prime}\right]} m_{i}^{2} G_{d-2}^{\left[\eta^{\prime}\right]}+\cdots=0<\begin{array}{c}
G \text { bases } \\
\text { are } \\
\text { independent }
\end{array}
\end{aligned}
$$

The amplitude bases constructed by this procedure are independent without any redundancy !

Introduction of on-shell amplitude

- Amplitude structure is determined by little group (LG) and unitarity
- For external massless particle-j with helicity h_{j}, its amplitude should take $-2 h_{j}$ unit charge of massless LG $U(1)_{j}$
Polarization tensor
$\epsilon_{h_{j}}$ expression is

$$
\left.\epsilon_{h_{j}}=\mid j\right]^{2 h_{j}}\left(|j\rangle^{-2 h_{j}}\right)
$$

Takes all the LG $U(1)_{j}$ charge
unique
Linear function of polarization tensor $\epsilon_{h_{j}}$

$$
\mathscr{M}([i j],\langle i j\rangle, \ldots)=\mathscr{M}\left(\epsilon_{h_{j}}, p_{j}, \ldots\right)
$$

Massive particle-i with spin s_{i}, the amplitude should be in $2 s_{i}$ indices symmetric representation of massive LG $S U(2)_{i}$, i.e. $\left(2 s_{i}+1\right)$ representation of $S U(2)_{i}$

Linear function of polarization tensor $\epsilon_{S_{i}}$

$$
\left.\mathscr{M}^{\{I\}}\left([i j]^{I J},\langle i j\rangle^{I J}\right)=\mathscr{M}\left(\epsilon_{s_{i}}, \mid i^{I}\right]\left\langle i_{I}\right|, \ldots\right)
$$

$\epsilon_{S_{i}}$ expression is not unique

$$
\left.\epsilon_{s_{i}}=\left(\left|i^{\{I}\right\rangle\right)^{l_{i}}\left(\mid i^{I\rangle}\right]\right)^{2 s_{i}-l_{i}} \in\left(2 s_{i}+1\right), l_{i} \in\left[0,2 s_{i}\right]
$$

E. Witten, Commun. Math. Phys. 252, 189 (2004) doi:10.1007/s00220-004-1187-3 [hep-th/0312171].
N. Arkani-Hamed, T. C. Huang and Y. t. Huang, arXiv:1709.04891 [hep-th].

Massless amplitude basis

- IBP redundancy can be removed by $U(N)$ symmetry

Non-holomorphic bases
with n right-handed spinor
and \tilde{n} left-handed spinors
$f^{(n, \tilde{n})}(\{\lambda, \widetilde{\lambda}\})=\left(\bar{g}_{U(N)} \otimes g_{U(N)}\right)$

- The amplitude bases without IBP are the bases of the first $\mathrm{U}(\mathrm{N})$ representation

Massive amplitude basis

- Two G bases with one massless g are EOM redundant

$$
\begin{aligned}
& \left.\left.G^{\prime}(\mid j],|j\rangle, p_{i}\right)-G(\mid j],|j\rangle, p_{i}\right)=\mathcal{O}\left(m_{i}^{2}\right) \quad \text { EOM redundant }
\end{aligned}
$$

- One massless g basis one-to-to corresponds to an independent G basis

Massless amplitude basis

- IBP redundancy can be removed by $U(N)$ symmetry

Holomorphic case

Bases with only n right-handed spinors

$$
f_{\mathrm{hol}}^{(n)}(\{\tilde{\lambda}\})=g_{S U(2)_{r}}
$$

Same shape
Bases with only \tilde{n}
left-handed spinors

$$
f_{\text {anti-hol }}^{(\tilde{n})}(\{\lambda\})=g_{S U(2)_{l}} \otimes \bar{g}_{U(N)}=
$$

A column of white boxes represents the square spinor product [ij]

A column of blue boxes represents the angle spinor product $\langle i j\rangle$

Holomorphic polynomials are not IBP redundant

Constructing On-shell Operator Basis for All Masses and Spins

Teng Ma
 (Technion)

Based on:
Arxiv: 2103.15837, 2202.08350

Collaborators:
Ziyu Dong, Jing Shu

[^0]: C. Cheung, K. Kampf, J. Novotny and J. Trnka, Phys. Rev. Lett. 114, no.22, 221602 (2015) doi:10.1103/PhysRevLett.114.221602 [arXiv:1412.4095 [hep-th]].
 C. Cheung, K. Kampf, J. Novotny, C. H. Shen and J. Trnka, JHEP 02, 020 (2017) doi:10.1007/JHEP02(2017)020 [arXiv:1611.03137 [hepth]].

