Hilbert Series, Higgs,
 and HEFT

Brian Henning

Kavli Institute for Theoretical Physics
\& University of California, Santa Barbara

Kavli
Institute
for
Theoretical
Physics

The universe at different scales

The universe at
different scales
$\begin{array}{llll}10^{27} & 10^{20} & 10^{10} & 1 \mathrm{~m}\end{array}$

The universe at different scales

Charmonium spectrum
\star = exotics

$10^{10} \quad 1 \mathrm{~m}$

Standard
Model

New Physics
under our nose: QCD

Numerous quantitative and qualitative mysteries in the strong sector

This talk: EFT

Effective Field Theory:
New Interactions

- Model independent
- Guide for experiments

Are we sure we're thinking of everything?

Brian Henning

EFT \& the hunt for new physics

ATLAS Exotics Searches* - 95\% CL Upper Exclusion Limits
ATLAS Preliminary $\sqrt{5}=8,13 \mathrm{TeV}$

A shift in thinking

A shift in thinking

What if you're resolution limited?

A shift in thinking

What if you're resolution limited?

Instead parameterize all possible (local) interactions involving particles you can produce

A shift in thinking

parameterize all possible (local) interactions
 Hilbert series methods!

The importance of the Higgs

The importance of the Higgs

The importance of the Higgs

Deviations in *any* of h couplings leads to unitarity violation

can’t keep growing
 $\frac{y(E) e^{-m r}}{r}$

 $$
y e^{-m b} \text { maximal for } b=\frac{1}{m} \log y
$$

$\underset{\text { coupling grows at most }}{\text { polynomially with } \mathrm{E}} \lim _{E \rightarrow \infty} y(E) \lesssim E^{\alpha}$

can’t keep growing

$$
\frac{y(E) e^{-m r}}{r}
$$

$$
y e^{-m b} \text { maximal for } b=\frac{1}{m} \log y
$$

coupling grows at most $\lim _{E \rightarrow \infty} y(E) \lesssim E^{\alpha}$ polynomially with $\mathrm{E} \quad E \rightarrow \infty$

$$
\begin{aligned}
\sigma \sim b^{2} \lesssim & \frac{\alpha^{2}}{m^{2}} \log ^{2} E \quad \sigma \sim \frac{1}{E^{2}}|\mathcal{A}|^{2} \Rightarrow \mathcal{A} \lesssim E \log E \\
& \text { Cross-sections/amplitudes } \\
& \text { *bounded* in energy! } \quad \text { (Froissart bound) }
\end{aligned}
$$

Unitarity violation and EFT

EFT makes all
this transparent

$$
\mathcal{L}=\sum_{i} \frac{c_{i}}{\Lambda^{\Delta_{i}-4}} \mathcal{O}_{i}
$$

Unitarity violation and EFT

EFT makes all this transparent

$$
\mathcal{L}=\sum_{i} \frac{c_{i}}{\Lambda^{\Delta_{i}-4}} \mathcal{O}_{i}
$$

$$
\text { single } \mathcal{O}_{i}
$$ insertion

$$
\mathcal{A}_{\mathcal{O}_{i}}(E \rightarrow \infty) \sim\left(\frac{E}{\Lambda}\right)^{\Delta_{i}-4}
$$

naughty high-E behavior

Unitarity violation and EFT

EFT makes all this transparent

$$
\mathcal{L}=\sum_{i} \frac{c_{i}}{\Lambda^{\Delta_{i}-4}} \mathcal{O}_{i}
$$

$$
\text { single } \mathcal{O}_{i}
$$

insertion

$$
\underbrace{\mathcal{A}_{\mathcal{O}_{i}}(E \rightarrow \infty) \sim\left(\frac{E}{\Lambda}\right)^{\Delta_{i}-4}}
$$

naughty high-E behavior

Unitarity violation and EFT

$$
\begin{gathered}
\sigma_{\mathrm{tot}} \lesssim \log ^{2} E \quad \sigma_{\mathrm{tot}}=\sum_{X} \sigma_{A B \rightarrow X} \\
\text { *no* channel can grow too fast }
\end{gathered}
$$

in EFT *many* channels exhibit E growth

\Rightarrow multi-boson processes are intimately related! (will come back to)

Recent interesting perspectives:
-Chang \& Luty 1902.05556
-Falkowski \& Rattazzi 1902.05936
-Cohen, Craig, Lu, Sutherland 2108.03240

Adapting EFT into analyses

 EFT provides powerful, model-independent way to probe physics

Image credit: Josh McFayden (CMS, Top2022)

Which EFT?

Image credit: N. Craig

SM \subset SMEFT \subset HEFT

Our world

-obeys E\&M at low energies
$-E W$ gauge bosons unified into $\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{X}(1)_{\mathrm{Y}}$
-has neutral scalar of mass 125 GeV

\Rightarrow MOST general theory: HEFT

Relate the two by field redefinition:

$$
\vec{\phi}=(v+h) \vec{n}(\pi) ; \quad \vec{\phi} \cdot \vec{\phi}=(v+h)^{2}
$$

SMEFT can always be written as HEFT:

$$
\begin{gathered}
\mathcal{L}=\frac{1}{2} A(\vec{\phi} \cdot \vec{\phi})(\partial \vec{\phi} \cdot \partial \vec{\phi})+\frac{1}{2} B(\vec{\phi} \cdot \vec{\phi})(\vec{\phi} \cdot \partial \vec{\phi})^{2}-V(\vec{\phi} \cdot \vec{\phi}) \\
=\frac{1}{2}\left[A+(v+h)^{2} B\right](\partial h)^{2}+\frac{1}{2}(v+h)^{2} A(\partial \vec{n})^{2}-V \\
\mathcal{C} \begin{array}{c}
\text { Correlations at every } \\
\text { Order between } \mathrm{h}, \mathrm{~V}
\end{array}
\end{gathered}
$$

HEFT cannot always be written as SMEFT:

\[

\]

HEFT allows most general parameterization of Higgs potential

Image credit: R. Petrossian-Byrne

VS.

or

What goes wrong by only working with SMEFT?

- Potential errors in interpretation. Say we see a deviation from the SM
- In SMEFT, SU(2) symmetry typically means deviations are correlated
- In HEFT this is not necessarily the case
- We should make all motivated measurements
- Just because $2 \rightarrow 2$ might look SM, that does not imply $2 \rightarrow 3,2 \rightarrow 4, \ldots$ necessarily are
(see, e.g., Falkowski, Rattazzi 1902.05936; Cohen, Craig, Lu, Sutherland 2108.0324)

HEFT scenarios

General lore: new particles that significantly contribute to EW symmetry breaking are captured by HEFT
...but that lore is not general enough...for example

HEFT scenarios

General lore: new particles that significantly contribute to EW symmetry breaking are captured by HEFT
...but that lore is not general enough...for example

HEFT required whenever a particle receives more than half its mass from the Higgs
 Banta, Cohen, Craig, Lu, Sutherland 2110.02967

Scalars

Brian Henning

Hypercharge-1

Higgs2023 30/Nov/2023

HEFT scenarios

General lore: new particles that significantly contribute to EW symmetry breaking are captured by HEFT
...but that lore is not general enough...for example
HEFT required whenever a particle receives more than half its mass from the Higgs

Banta, Cohen, Craig, Lu, Sutherland 2110.02967

But perhaps the most motivated place for HEFT* is:
high-multiplicity EW boson processes
*this is also well-motivated for SMEFT, as we'll see

4mv and the LHC

Scale of unitarity violation: HEFT: 4пv ~ 3 TeV SMEFT: 4п $\Lambda \sim$ arbitrary

Process	Unitarity Violating Scale
$h^{2} Z_{L} \leftrightarrow h Z_{L}$	$66.7 \mathrm{TeV} /\left\|\delta_{3}-\frac{1}{3} \delta_{4}\right\|$
$h Z_{L}^{2} \leftrightarrow Z_{L}^{2}$	$94.2 \mathrm{TeV} /\left\|\delta_{3}\right\|$
$h W_{L} Z_{L} \leftrightarrow W_{L} Z_{L}$	$141 \mathrm{TeV} /\left\|\delta_{3}\right\|$
$h Z_{L}^{2} \leftrightarrow h Z_{L}^{2}$	$9.1 \mathrm{TeV} / \sqrt{\left\|\delta_{3}-\frac{1}{5} \delta_{4}\right\|}$
$h W_{L} Z_{L} \leftrightarrow h W_{L} Z_{L}$	$11.1 \mathrm{TeV} / \sqrt{\left\|\delta_{3}-\frac{1}{5} \delta_{4}\right\|}$
$Z_{L}^{3} \leftrightarrow Z_{L}^{3}$	$15.7 \mathrm{TeV} / \sqrt{\left\|\delta_{3}\right\|}$
$Z_{L}^{2} W_{L} \leftrightarrow Z_{L}^{2} W_{L}$	$20.4 \mathrm{TeV} / \sqrt{\left\|\delta_{3}\right\|}$
$h Z_{L}^{3} \leftrightarrow Z_{L}^{3}$	$6.8 \mathrm{TeV} /\left\|\delta_{3}-\frac{1}{6} \delta_{4}\right\|^{\frac{1}{3}}$
$h Z_{L}^{2} W_{L} \leftrightarrow Z_{L}^{2} W_{L}$	$8.0 \mathrm{TeV} /\left\|\delta_{3}-\frac{1}{6} \delta_{4}\right\|^{\frac{1}{3}}$
$Z_{L}^{4} \leftrightarrow Z_{L}^{4}$	$6.1 \mathrm{TeV} /\left\|\delta_{3}-\frac{1}{6} \delta_{4}\right\|^{\frac{1}{4}}$

Unitarity violation involving Higgs trilinear and quartic
Chang, Luty 1902.05556

Multi-boson processes

\Rightarrow Unitarity violation in many channels
\Rightarrow Multi-boson processes sensitive probes
\Rightarrow Numerous exciting (and challenging) opportunities -high-multiplicity -polarization tagging -hadronic decays

Aug 2023

See Mai Liu's talk at this conference

Goldstones = longitudinals

$$
\left.|H|^{2} \sim(v+h)^{2}+\vec{\phi}^{2} \rightarrow \begin{gathered}
\mathrm{HC}:|H|^{2} \mathcal{O}_{\mathrm{SM}} \supset v h \mathcal{O}_{\mathrm{SM}} \\
\mathrm{HwH}:|H|^{2} \mathcal{O}_{\mathrm{SM}} \supset \vec{\phi}^{2} \mathcal{O}_{\mathrm{SM}}
\end{gathered} \right\rvert\,
$$

Goldstones = longitudinals

$$
|H|^{2} \sim(v+h)^{2}+\vec{\phi}^{2} \rightarrow \begin{array}{r}
\mathrm{HC}:|H|^{2} \mathcal{O}_{\mathrm{SM}} \supset v h \mathcal{O}_{\mathrm{SM}} \\
\mathrm{HwH}:|H|^{2} \mathcal{O}_{\mathrm{SM}} \supset \vec{\phi}^{2} \mathcal{O}_{\mathrm{SM}}
\end{array}
$$

$$
\begin{gathered}
|H|^{6} \supset v h \phi^{4}+\phi^{6} \\
V_{L} V_{L} \rightarrow V_{L} V_{L} h \\
\longleftrightarrow
\end{gathered} V_{L} V_{L} \rightarrow V_{L} V_{L} V_{L} V_{L}
$$

diagram in unitary gauge

Experimental opportunities

innovate WITH experimentalists

polarization tagging

constraints from only longitudinals
are stronger
high-multiplicity EW processes

>4 point
massive amplitudes

Challenge analytically AND numerically (e.g. MadGraph)
hadronic decay channels

Building EFTs, and knowing you've thought of everything ...or... how I learned to count

all possible interactions

$$
\lambda \sigma[\phi, \partial] \sim \lambda \phi^{k} \partial^{*} \Leftrightarrow k \prod_{5}^{1} \int_{4}^{3}=\lambda \cdot f\left(p_{1}, \cdots, p_{k}\right)
$$

An operator specifies an interaction

$$
\begin{aligned}
& \left(\partial_{\mu}|1+|^{2}\right)^{2} \sim \because \because_{0}\left(p_{1}+p_{2}\right) \cdot\left(p_{3}+p_{4}\right) \\
& \operatorname{Tr}\left(\omega_{\mu \nu}^{3}\right) \sim{ }^{\xi} \sim \Omega
\end{aligned}
$$

HENCE

All possible operators = all possible interactions

all possible interactions

Experiment sees interactions \Leftrightarrow Measures scattering amps (S-matrix)

$\sim f\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$

all possible interactions

Experiment sees interactions \Leftrightarrow Measures scattering amps (S-matrix)

$\left.\sim f\left(p_{1}, P_{2}, p_{3}, p_{4}\right)\right\} \quad \begin{aligned} & \text { Not all functions } \\ & \text { independent! }\end{aligned}$

$$
\text { e.g. } f_{2}\left(p_{i}\right)=f_{1}\left(p_{i}\right)+\underbrace{\left(p_{1}+p_{2}+p_{3}+p_{4}\right)}_{=\begin{array}{c}
0 \text { by momentum } \\
\text { conservation }
\end{array}} g\left(p_{i}\right) \simeq f_{1}\left(p_{i}\right)
$$

all possible interactions

Experiment sees interactions \Leftrightarrow Measures scattering amps (S-matrix)
 independent!

$$
\text { e.g. } \quad f_{2}\left(p_{i}\right)=f_{1}\left(p_{i}\right)+\underbrace{\left(p_{1}+p_{2}+p_{3}+p_{4}\right)}_{\begin{array}{c}
0 \text { by momentum } \\
\text { conservation }
\end{array}} g\left(p_{i}\right) \simeq f_{1}\left(p_{i}\right)
$$

PROBLEM: determine all independent amplitudes in the SM CRUCIAL: "independent" \Leftrightarrow rules governing S-mat

EFT operator basis $\mathcal{L}=\sum_{i} c_{i} \mathcal{O}_{i}, S=\int d^{d} x \mathcal{L}(x), \quad Z=\int D \phi e^{i S}$

Lorentz invariance $\Leftrightarrow \mathcal{O}_{i}$ are Lorentz scalars

Translation invariance \Leftrightarrow can integrate by parts

$$
\left(\int d x \partial_{\mu} \mathcal{O}^{\mu}(x)=0\right)
$$

On-shell \Leftrightarrow EOM/field redefinitions

Equivalence relations for operator basis follow from the S-matrix!

EFT operator basis

Basic questions: 1) How many ops?
2) What are they?

Find a partition function
operator basis \Leftrightarrow S-matrix
\Rightarrow spactime symmetry
\Rightarrow can use group theory!

EFT operator basis

Basic questions: 1) How many ops?
2) What are they?

Find a partition function
operator basis \Leftrightarrow S-matrix
\Rightarrow spactime symmetry
\Rightarrow can use group theory!
"Hilbert series"

$\left[\right.$ compare $\left.Z=\operatorname{Tr}_{\mathcal{H}} \widehat{U}=\sum_{|i\rangle \in \mathcal{H}}\langle i| e^{-\beta \widehat{H}}|i\rangle=\sum_{\Delta} c_{\Delta} q^{\Delta}, q \equiv e^{-\beta}\right]$
Brian Henning

Hilbert series for SMEFT
\# ops of dimension Δ in SMEFT

Brian Henning
Higgs2023 鸣efindivxeozinn Δ

Hilbert series for HEFT

LHC copiously produces W's and Z's charged under $\mathrm{U}(1)_{\text {ем }}$
 $\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{Y}}$ realized non-linearly

Our world: $S U(2)_{L} \times U(1)_{Y} \overbrace{U(1)_{\mathrm{EM}}}^{\text {what we see in the IR }} \mathrm{W}^{ \pm}, \mathrm{Z}$ massive

Typical treatments: $\quad S U(2)_{L} \times U(1)_{Y} / S U(2)_{D} \oplus$ spurions

Hilbert series for HEFT

LHC copiously

 produces W's and Z's
$S U(2)_{L} \times U(1)_{Y} \overbrace{U(1)_{\mathrm{EM}}}^{\text {what we see in the IR }} \mathrm{W}^{ \pm}, \mathbf{Z}$ massive
 Our world:

 Typical treatments: $\quad S U(2)_{L} \times U(1)_{Y} / S U(2)_{D} \oplus$ spurions Hilbert series developed for both picturesGraf, BH, Lu, Melia, Murayama 2211.06275 Sun, Wang, Yu 2211.11598

Construction of NLO and NNLO HEFT ops: Sun, Xiao, Yu 2206.07722, 2210.14939

Hilbert series ingredients

Field	Lorentz Group	$S U(3)_{C}$	$U(1)_{\text {EM }}$	dim
u_{L}, u_{R}	$\left(\frac{1}{2}, 0\right),\left(0, \frac{1}{2}\right)$	3	$\frac{2}{3}$	$\frac{3}{2}$
d_{L}, d_{R}		3	$-\frac{1}{3}$	
$\nu_{L},\left(\nu_{R}\right)$		1	0	
e_{L}, e_{R}		1	-1	
G_{L}, G_{R}	$(1,0),(0,1)$	8	0	2
$W_{L}^{ \pm}, W_{R}^{ \pm}$		1	± 1	
Z_{L}, Z_{R}		1	0	
A_{L}, A_{R}		1	0	
$V^{ \pm}$	$\left(\frac{1}{2}, \frac{1}{2}\right)$	1	± 1	1
V^{z}			0	
h	$(0,0)$	1	0	1

Everything fixed upon specifying particle content and their representations

massive $\mathrm{W}^{ \pm}, \mathrm{Z}$

Can split into longitudinal and transverse components
\Rightarrow Higgs mechanism!

Power counting from Hilbert series

The "natural" expansion of Hilbert series is in

(1) Scaling dimension (powers of energy)
(2) Number of fields

Precisely the organizational scheme

used for "primary observables"
(Chang, Chen, Liu, Luty 2212.06215)

Hilbert goes to town

Constructing operators

Example: all ops involving 2 H's, 2 W's, and k derivatives?

$$
k_{1}+k_{2}+k_{3}+k_{4}=k
$$

- degree k polynomial
$\partial^{k_{1}} H \partial^{k_{2}} H \partial^{k_{3}} W \partial^{k_{4}} W \Leftrightarrow f\left(p_{1}, p_{2}, p_{3}, p_{4}\right) H\left(p_{1}\right) H\left(p_{2}\right) W\left(p_{3}\right) W\left(p_{4}\right)$

Constructing operators

Example: all ops involving 2 H's, 2 W's, and k derivatives?

Constructing operators
 BH, T. Melia 1902.06747 1902.06754

Constructing operators

```
momentum conservation /constraints define a manifold in phase space
=> on-shell
\(\Rightarrow\) Lorentz invariance
constraints define a manifold in phase space \(\xrightarrow{\delta\left(p_{1}^{2}\right) \cdots \delta\left(p_{n}^{2}\right) \times \delta^{4}\left(P^{\mu}-\left(p_{1}^{\mu}+\cdots+p_{n}^{\mu}\right)\right)} \begin{aligned} \text { use spinors }\end{aligned} \delta^{4}\left(P_{\alpha \dot{\alpha}}-\left(\lambda^{1} \widetilde{\lambda}^{1}+\cdots+\lambda^{n} \widetilde{\lambda}^{n}\right)_{\alpha \dot{\alpha}}\right)\)
```

> Want a set of class functions on the manifold
> \longrightarrow generalized spherical harmonics
> \Downarrow
> operators \Leftrightarrow harmonics on phase space

Constructing operators

$\left.\begin{array}{l}\Rightarrow \text { momentum conservation } \\ \Rightarrow \text { on-shell } \\ \Rightarrow \text { Lorentz invariance }\end{array}\right\} \quad \begin{gathered}\text { constraints define a manifold in phase space } \\ \begin{array}{c}\delta\left(p_{1}^{2}\right) \cdots \delta\left(p_{n}^{2}\right) \times \delta^{4}\left(P^{\mu}-\left(p_{1}^{\mu}+\cdots+p_{n}^{\mu}\right)\right) \\ \text { use spinors }\end{array} \delta^{4}\left(P_{\alpha \dot{\alpha}}-\left(\lambda^{1} \widetilde{\lambda}^{1}+\cdots+\lambda^{n} \widetilde{\lambda}^{n}\right)_{\alpha \dot{\alpha}}\right)\end{gathered}$

$$
P_{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
M & 0 \\
0 & M
\end{array}\right)=\left(\begin{array}{cc}
\left|\vec{\lambda}_{1}\right|^{2} & \vec{\lambda}_{1} \cdot \vec{\lambda}_{2}^{*} \\
\vec{\lambda}_{2} \cdot \vec{\lambda}_{1}^{*} & \left|\vec{\lambda}_{2}\right|^{2}
\end{array}\right)
$$

geometry $\quad r^{2}=\vec{v}^{2}$
basically two $r^{2}=\vec{u}^{2} \quad G / H=U(N) / U(N-2)$ orthogonal

"Stiefel manifold"
Grassmannian \subset Stiefel spheres $0=\vec{v} \cdot \vec{u}$
$G_{2, N}(\mathbb{C})=U(N) / U(N-2) \times U(2)$
Brian Henning

Phase space harmonics

The families of operators belong to the same Grassmann harmonic！

BH，T．Melia 1902．06747， 1902.06754

$\#$	田	$日$	－
		$\theta \bar{\theta}$	$\bar{\theta}$
			甸
			\square

$\begin{gathered} \tilde{\psi}^{2} \phi \\ \tilde{\psi} F^{4} \\ F^{3} \end{gathered}$	$\begin{gathered} F^{2} \phi^{2} \\ F \psi^{2} \phi \\ \psi 4 \end{gathered}$	$4^{2} \phi^{3}$	ϕ^{6}
		$\begin{aligned} & \phi^{4} \partial^{2} \\ & 4 \bar{\psi} \phi^{2} \partial \\ & \psi^{2} \bar{\psi}^{2} \end{aligned}$	$\psi^{2} \phi^{3}$
			$\begin{aligned} & \bar{F}^{2} \phi^{2} \\ & \overline{\bar{F} \Psi^{2} \phi} \\ & \bar{\psi}^{4} \end{aligned}$
			$\begin{aligned} & \overline{\bar{\Psi}}^{2} \phi \\ & \widetilde{\Psi} \bar{\mp} \bar{\psi} \\ & \bar{F}^{3} \end{aligned}$

Explains structure of EFT non－renormalization／helicity selection rules

Cheung \＆Shen 1505.01844
Azatov，Contino，Machado，Riva 1607.05236 Jiang，Shu，Xiao，Zheng 2001.04481

Li，Ren，Shu，Xiao，Yu 2005．00008， 2012.11615
Dong，Ma，Shu，Zheng 2202．08350

Harmonics and tableaux methods

Massless

Phase space geometry

BH, Melia 1902.06747, 1902.06754;
Larkoski, Melia 2008.06508

SMEFT from on-shell:

Ma, Shu, Xiao 1902.06752;
Jiang, Shu, Xiao, Zheng 2001.04481

Dim-8 SMEFT

Li, Ren, Shu, Xiao, Yu, Zheng 2005.00008, 2012.11615

Massive

On-shell massive amplitudes
Durieux, Kitahara, Shadmi, Weiss 1909.10551; ibid + Machado 2008.09652;
Falkowski, Isabella, Machado 2011.05339
Tableaux for any mass and spin Dong, Ma, Shu 2103.15837

HEFT

Sun, Xiao, Yu 2206.07722, 2210.14939; Dong, Ma, Shu, Zhou 2211.16515
$+\ldots$
isomorphic problems

OPERATOR -STATE CORRESPONDENCES)

$$
\left|\sigma_{\Delta, l}\right\rangle=\theta_{\Delta, l}(0)|0\rangle
$$

$\left.\left|\vec{p}_{1} \sigma_{1}, \ldots, \vec{p}_{n} \sigma_{n}\right\rangle=\alpha_{\sigma}^{+} \mid \bar{p}\right) \ldots a_{\sigma_{-}}^{+}\left(\vec{p}_{n}\right)|0\rangle, \phi \sim \int\left(\epsilon_{(p)}^{\sigma} a_{\sigma}^{+}(p)+h . c.\right)$

OPERATOR SPACE
hilbert space

$$
\begin{aligned}
& \text { SCATTERING AMPLITUDES } \\
& \text { (} S \text {-MATRIX) }
\end{aligned}
$$

Other applications: EFT

operators/EFT amplitudes

phase space (Grassmannian)
harmonics and EFT positivity

generalize to massive particles (hard, but useful!)

Massive phase space manifold:
Is there a "nice" geometric formulation?
numerous other questions: identical particles (symmeterization); non-renormalization thms;

THANK YOU!

BACKUP

upshot on Stiefel harmonics

harmonics labeled by Young diagrams
(with at most two rows)

these dictate specific polynomials in the spinors
comments:

1) each shape corresponds to operators
2) multiple operators belong to same shape
a) these involve particles with different spin
3) these operators are conformal primaries

Construct states algebraically
e.g.

$$
\left|l, \mu=\left(\mu_{1}, \ldots, \mu_{3}\right)\right\rangle \simeq F^{3}
$$

now apply $\mathrm{U}(\mathrm{N})$ lowering op:
$L_{-}|l, \mu\rangle \sim\left|l, \mu^{\prime}\right\rangle \simeq \widetilde{\psi} F \psi$
\rightarrow boosted top
\rightarrow forward jet
$\left|\eta_{j}\right|>2.5, p_{T}^{j}>30 \mathrm{GeV}, E_{j}>300 \mathrm{GeV}$
$\rightarrow \mathrm{N}_{\text {lep }}$ from vector decays
look for single boosted top + forward jet, then just count leptons
\# events @ HL-LHC

Process	0ℓ	1ℓ	$\ell^{ \pm} \ell^{\mp}$	$\ell^{ \pm} \ell^{ \pm}$	$3 \ell(4 \ell)$
$W^{ \pm} W^{\mp}$	$3449 / 567$	$1724 / 283$	$216 / 35$	-	-
$W^{ \pm} W^{ \pm}$	$2850 / 398$	$1425 / 199$	-	$178 / 25$	-
$W^{ \pm} Z$	$3860 / 632$	$965 / 158$	$273 / 45$	-	$68 / 11$
$Z Z$	$2484 / 364$	-	$351 / 49$	-	$(12 / 2)$

$\geq 2 \mathrm{~L}$: small
background

$$
\text { Main bkg: ttij } \rightarrow \text { tWbij large background, }
$$

