Hilbert Series, Higgs, and HEFT

Brian Henning

Kavli Institute for Theoretical Physics & University of California, Santa Barbara Kavli Institute for Theoretical Physics

Higgs 2023 30.11.2023

- Effective Field Theory: New Interactions
- Model independent
- Exhaustive
- Guide for experiments

EFT & the hunt for new physics

A	TLAS Exotics	Search	es* - 9	95%	CL	Upper	Exclusion Limits	ATL	S Preliminar
St	atus: May 2020	1 ~	lote÷	Fmiss	(C dt[ft	s-11	$\int \mathcal{L} dt = 0$	3.2 - 139) fb ⁻¹	$\sqrt{s} = 8, 13 \text{ TeV}$
	woder	ι,γ	Jets	T	JZ utin	, <u>,</u>			Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multipit RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WV \rightarrow (vqq)$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ \hline \\ 2 \ 1 \ e, \mu \end{array}$ $\begin{array}{c} - \\ 2 \ \gamma \\ \hline \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	1 - 4j -2j $\geq 2j$ $\geq 3j$ -2j/1J $\geq 1b, \geq 1J/2$ $\geq 2b, \geq 3j$	Yes - - - - - Yes Yes Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	M _D Ms M _{th} M _{th} G _{KK} mass G _{KK} mass g _{KK} mass KK mass	7.7 TeV 8.5 TeV 8.9 TeV 8.2 TeV 9.55 TeV 2.3 TeV 2.0 TeV 3.8 TeV 1.8 TeV	$\begin{array}{l} n=2 \\ n=3 \; H.Z \; NLO \\ n=6 \\ n=6, \; M_O=3 \; {\rm TeV}, \; {\rm rot} \; {\rm BH} \\ n=6, \; M_O=3 \; {\rm TeV}, \; {\rm rot} \; {\rm BH} \\ k/\overline{M}_{\rm HI}=0.1 \\ k/\overline{M}_{\rm HI}=1.0 \\ k/\overline{M}_{\rm HI}=1.0 \\ \Gamma/m=15\% \\ {\rm Ther} \left(1,1\right) \; {\rm Si}(A^{(1,1)} \to {\rm rc}\right)=1 \end{array}$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 2004.14636 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to \tau \\ \text{SSM } W' \to \tau \\ \text{HYT } W' \to W Z \to \ell \nu ag \text{ mod} \\ \text{HYT } W' \to W Z \to \ell \nu ag \text{ mod} \\ \text{HYT } W' \to W H / 2H \text{ model } B \\ \text{HYT } W' \to W H \text{ model } B \\ \text{LRSM } W_R \to tb \\ \text{LRSM } W_R \to t \mu_{N_R} \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ r \\ el \ B \\ 0 \ e, \mu \\ multi-channe \\ 0 \ e, \mu \\ multi-channe \\ 2 \mu \end{array}$	-2b $\geq 1b, \geq 2J$ -2j/1J 2J $\geq 1b, \geq 2J$ $\geq 1b, \geq 2J$ $\Rightarrow 1J$	- Yes Yes Yes -	139 36.1 36.1 139 36.1 139 36.1 139 36.1 139 36.1 80	Z' mass Z' mass Z' mass W' mass W' mass W' mass V' mass V' mass W' mass Wr mass W _R mass	5.1 TeV 2.42 TeV 2.1 TeV 6.0 TeV 3.7 TeV 4.3 TeV 3.8 TeV 2.93 TeV 3.2 TeV 3.2 TeV 3.2 TeV 5.0 TeV	$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V = 3$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.06299 2005.05138 1906.06609 1801.06992 2004.14636 1906.06589 1712.06518 CERN-EP-2020-073 1807.10473 1904.12579
ū	Cl qqqq Cl ℓℓqq Cl tttt	 ≥1 <i>e,μ</i>	2 j ≥1 b,≥1 j	- Yes	37.0 139 36.1	л л л	2.57 TeV	$\begin{array}{c c} \textbf{21.8 TeV} & \eta_{\bar{t}L} \\ \hline \textbf{35.8 TeV} & \eta_{\bar{t}L} \\ C_{4t} = 4\pi \end{array}$	1703.09127 CERN-EP-2020-066 1811.02305
MO	Axial-vector mediator (Dirac D Colored scalar mediator (Dirac $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac D	M) 0 e,μ cDM) 0 e,μ 0 e,μ M) 0-1 e,μ	$\begin{array}{c} 1-4 \ j \\ 1-4 \ j \\ 1 \ J, \leq 1 \ j \\ 1 \ b, 0\text{-}1 \ J \end{array}$	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	m _{med} m _{med} M. m _p	1.55 TeV 1.67 TeV 700 GeV 3.4 TeV	$\begin{array}{l} g_{q}{=}0.25,g_{\chi}{=}1.0,m(\chi)=1~{\rm GeV}\\ g{=}1.0,m(\chi)=1~{\rm GeV}\\ m(\chi)<150~{\rm GeV}\\ y=0.4,\lambda=0.2,m(\chi)=10~{\rm GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
Ę	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e, μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	LQ mass LQ mass LQ ⁴ mass LQ ⁴ mass	1.4 TeV 1.56 TeV 1.03 TeV 970 GeV	$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \mathcal{B}(\mathrm{L}Q_1'' \rightarrow br) = 1 \\ \mathcal{B}(\mathrm{L}Q_3'' \rightarrow tr) = 0 \end{array}$	1902.00377 1902.00377 1902.08103 1902.08103
quarks	$ \begin{array}{l} VLQ\;TT \rightarrow Ht/Zt/Wb + X \\ VLQ\;BB \rightarrow Wt/Zb + X \\ VLQ\;BT_{5/3}\;T_{5/3} \rightarrow Wt + J \\ VLQ\;T_{5/3}\;T_{5/3} \rightarrow Wt + J \\ VLQ\;Y \rightarrow Wb + X \\ VLQ\;B \rightarrow Hb + X \\ VLQ\;QQ \rightarrow WqWq \end{array} $	multi-channe multi-channe X $2(SS)/\geq 3 e_J$ $1 e_\mu$ $0 e_\mu, 2 \gamma$ $1 e_\mu$	$ \begin{array}{l} pl \\ pl \\ \mu \geq 1 \ b, \geq 1 \ j \\ \geq 1 \ b, \geq 1 \ j \\ \geq 1 \ b, \geq 1 \ j \\ \geq 4 \ j \end{array} $	Yes Yes Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass B mass T _{5/3} mass Y mass B mass Q mass	1.37 TeV 1.34 TeV 1.64 TeV 1.65 TeV 1.21 TeV 690 GeV	$\begin{split} & \text{SU(2) doublet} \\ & \text{SU(2) doublet} \\ & \mathcal{B}(T_{5/3} \rightarrow Wt) = 1, \ c(T_{5/3}Wt) = 1 \\ & \mathcal{B}(Y \rightarrow Wb) = 1, \ c_R(Wb) = 1 \\ & \kappa_B = 0.5 \end{split}$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton t^* Excited lepton v^*	- 1 γ - 3 e,μ 3 e,μ,τ	2j 1j 1b,1j -		139 36.7 36.1 20.3 20.3	q° mass q° mass b° mass l° mass y° mass	6.7 TeV 5.3 TeV 2.6 TeV 3.0 TeV 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1910.08447 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles	$ \begin{array}{r} 1 e, \mu \\ 2 \mu \\ 2,3,4 e, \mu (SS \\ 3 e, \mu, \tau \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	≥ 2 j 2 j 5) - - -	Yes 	79.8 36.1 20.3 36.1 36.1 34.4	N ⁹ mass N _R mass H ^{±±} mass H ^{±±} mass multi-charged p monopole mass	560 GeV 3.2 TeV 870 GeV particle mass 1.22 TeV s 2.37 TeV	$\begin{split} m(W_R) &= 4.1 \text{ TeV}, g_L = g_R \\ \text{DY production} \\ \text{DY production}, \mathcal{B}(H_L^{\pm \pm} \to \ell \tau) = 1 \\ \text{DY production}, g = 5e \\ \text{DY production}, g = 1g_D, \text{spin } 1/2 \end{split}$	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130
	√s = 8 TeV	partial data	full da	ita		10	-1 1 1	⁰ Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

niggs2023 30/1907/2023

Are we sure we're thinking of everything?

EFT & the hunt for new physics

A	TLAS Exotics	Search	es* -	95%	CL	Upper	Exclusion Limits	ATL	S Preliminary
St	atus: May 2020 Model	ί,γ	Jets†	E ^{miss}	∫£ dt[fl	p ⁻¹]	$\int \mathcal{L} dt = (3)$	3.2 – 139) fb ⁻¹	$\sqrt{s} = 8$, 13 TeV Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multiple RS1 $G_{KK} \rightarrow \gamma\gamma$ Buik RS $G_{KK} \rightarrow WW/ZZ$ Buik RS $G_{KK} \rightarrow WV \rightarrow \ell \nu qq$ Buik RS $g_{KK} \rightarrow W \rightarrow \ell \nu qq$	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ \hline \\ 2 \ 1 \ e, \mu \\ \hline \\ 2 \ \gamma \\ \hline \\ 2 \ \gamma \\ \hline \\ nulti-channe \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$1 - 4j$ $-2j$ $\geq 2j$ $\geq 3j$ $-2j/1J$ $\geq 1b, \geq 1J/2$ $\geq 2b, \geq 3j$	Yes - - - - Yes Yes Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	M _D M _{bh} M _{th} M _{th} G _{KK} mass G _{KK} mass g _{KK} mass g _{KK} mass g _{KK} mass	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV 2.3 TeV 2.0 TeV 3.8 TeV 1.8 TeV	$\begin{array}{l} n=2 \\ n=3 \ \text{HLZ NLO} \\ n=6 \\ m=0 \\ m=0, \ M_D=3 \ \text{TeV, rot BH} \\ n=6, \ M_D=3 \ \text{TeV, rot BH} \\ k/M_n=0.1 \\ k/M_n=1.0 \\ f/m_n=1.0 \\ f/m_n=1.55 \\ f(M_1,3) \ \text{G}(4^{1,1}) \to tt) = 1 \end{array}$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 2004.14636 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to bb \\ \operatorname{Leptophobic} Z' \to tt \\ \operatorname{SSM} W' \to t\gamma \\ \operatorname{SSM} W' \to t\gamma \\ \operatorname{SSM} W' \to t\gamma \\ \operatorname{VT} W' \to WZ \to \ell\gamma q nq mod \\ \operatorname{HVT} W' \to WV \to q nq q mod \\ \operatorname{HVT} V' \to WV \to q nq q mod \\ \operatorname{HVT} V' \to WV \to d nd \\ \operatorname{LRSM} W_R \to tb \\ \operatorname{LRSM} W_R \to t M_R \end{array}$	$\begin{array}{c} 2\ e,\mu\\ 2\ \tau\\ -\\ 0\ e,\mu\\ 1\ r\\ el\ B\ 1\ e,\mu\\ el\ B\ 0\ e,\mu\\ multi-channe\\ 0\ e,\mu\\ multi-channe\\ 2\ \mu\end{array}$	- 2 b ≥ 1 b, ≥ 2 J - 2 j / 1 J 2 J ≥ 1 b, ≥ 2 J ≥ 1 b, ≥ 2 J	- Yes Yes Yes -	139 36.1 36.1 139 36.1 139 36.1 139 36.1 139 36.1 80	Z' mass Z' mass Z' mass Z' mass W' mass W' mass V' mass V' mass Wr mass W _R mass	5.1 TeV 2.42 TeV 2.1 TeV 3.1 TeV 3.7 TeV 4.3 TeV 3.8 TeV 2.93 TeV 3.2 TeV 3.2 TeV 3.2 TeV 5.0 TeV	$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V = 3$ $g_V = 3$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 1801.06992 2004.14636 1906.08589 1712.06518 CERN-EP-2020-073 1807.10473 1904.12679
C	Cl qqqq Cl ffq Cl tttt		2 j 	- Yes	37.0 139 36.1	A A A	2.57 TeV	21.8 TeV η_{LL}^- 35.8 TeV η_{LL}^- $ C_{4t} = 4\pi$	1703.09127 CERN-EP-2020-066 1811.02305
DM	Axial-vector mediator (Dirac DI Colored scalar mediator (Dirac $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac D	M) 0 e, μ DM) 0 e, μ 0 e, μ M) 0-1 e, μ	$\begin{array}{c} 1-4j\\ 1-4j\\ 1J,\leq 1j\\ 1b,01J \end{array}$	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	m _{med} m _{med} M. m _{\$}	1.55 TeV 1.67 TeV 700 GeV 3.4 TeV	$\begin{array}{l} g_{q} = 0.25, g_{\chi} = 1.0, m(\chi) = 1 \mathrm{GeV} \\ g = 1.0, m(\chi) = 1 \mathrm{GeV} \\ m(\chi) < 150 \mathrm{GeV} \\ y = 0.4, \lambda = 0.2, m(\chi) = 10 \mathrm{GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
р	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e, μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	LQ mass LQ mass LQ" mass LQ" mass	1.4 TeV 1.56 TeV 1.03 TeV 970 GeV	$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \mathcal{B}(LQ_{3}^{c} \rightarrow b\tau) = 1 \\ \mathcal{B}(LQ_{3}^{c} \rightarrow t\tau) = 0 \end{array}$	1902.00377 1902.00377 1902.08103 1902.08103
quarks	$ \begin{array}{l} VLQ\;TT \rightarrow Ht/Zt/Wb + X \\ VLQ\;BB \rightarrow Wt/Zb + X \\ VLQ\;T_{5/3}\;T_{5/3} T_{5/3} \rightarrow Wt + X \\ VLQ\;Y \rightarrow Wb + X \\ VLQ\;P \rightarrow Hb + X \\ VLQ\;QQ \rightarrow Hg Wq \\ \end{array} $	multi-channe multi-channe $(2(SS)) \ge 3 e_{,j}$ $1 e_{,\mu}$ $0 e_{,\mu}, 2 \gamma$ $1 e_{,\mu}$	$ \begin{array}{l} a \\ a \\ \mu \\ \mu \geq 1 \ b_i \geq 1 \ j \\ \geq 1 \ b_i \geq 1 \ j \\ \geq 1 \ b_i \geq 1 \ j \\ \geq 4 \ j \end{array} $	Yes Yes Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass B mass T _{5/3} mass Y mass B mass Q mass	1.37 TeV 1.34 TeV 1.64 TeV 1.65 TeV 1.21 TeV 699 GeV	$\begin{split} & \text{SU(2) doublet} \\ & \text{SU(2) doublet} \\ & \mathcal{B}(T_{5/3} \rightarrow Wt) = 1, \ c(T_{5/3}Wt) = 1 \\ & \mathcal{B}(Y \rightarrow Wb) = 1, \ c_R(Wb) = 1 \\ & \kappa_B = 0.5 \end{split}$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e,μ 3 e,μ,τ	2 j 1 j 1 b, 1 j -		139 36.7 36.1 20.3 20.3	q* mass q* mass b* mass l* mass y* mass	6.7 TeV 5.3 TeV 2.6 TeV 3.0 TeV 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0$ TeV $\Lambda = 1.6$ TeV	1910.08447 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles	$1 e, \mu$ 2μ $2,3,4 e, \mu$ (SS $3 e, \mu, \tau$ - -	≥ 2 j 2 j 5) - - -	Yes - - -	79.8 36.1 36.1 20.3 36.1 34.4	N ⁰ mass N _R mass H ^{±±} mass H ^{±±} mass multi-charged p monopole mas	560 GeV 3.2 TeV 870 GeV sarticle mass 1.22 TeV s 2.37 TeV		ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130
	√s = 8 TeV	partial data	full da	ata		10	-1 1 1	⁰ Mass scale [TeV]	·

*Only a selection of the available mass limits on new states or phenomena is shown

†Small-radius (large-radius) jets are denoted by the letter j (J)

What if you're resolution limited?

What if you're resolution limited?

Instead parameterize all possible (local) interactions involving particles you can produce

parameterize all possible (local) interactions

Solved and systematized with Hilbert series methods!

The importance of the Higgs

The importance of the Higgs

The importance of the Higgs

Deviations in *any* of h couplings leads to unitarity violation

Brian Henning

Higgs2023 30/Nov/2023

Unitarity violation and EFT

EFT makes all this transparent

$$\mathcal{L} = \sum_{i} rac{c_i}{\Lambda^{\Delta_i - 4}} \mathcal{O}_i$$

Unitarity violation and EFT

EFT makes all this transparent

Unitarity violation and EFT

$$\sigma_{\rm tot} \lesssim \log^2 E \qquad \sigma_{\rm tot} = \sum_X \sigma_{AB \to X}$$

no channel can grow too fast ⇔ in EFT *many* channels exhibit *E* growth

⇒ multi-boson processes are intimately related! (will come back to)

Recent interesting perspectives:

- -Chang & Luty 1902.05556
- -Falkowski & Rattazzi 1902.05936
- -Cohen, Craig, Lu, Sutherland 2108.03240

Brian Henning

Higgs2023 30/Nov/2023

ATLAS PHYS-PUB-2022-037

Brian Henning

Which EFT?

Image credit: N. Craig

Brian Henning

$SM \subset SMEFT \subset HEFT$

Our world

-obeys E&M at low energies -EW gauge bosons unified into $SU(2)_L \times U(1)_Y$ -has neutral scalar of mass 125 GeV

\Rightarrow <u>MOST</u> general theory: <u>HEFT</u>

Relate the two by field redefinition:

SMEFT can always be written as HEFT:

$$\begin{aligned} \mathcal{L} &= \frac{1}{2} A(\vec{\phi} \cdot \vec{\phi}) (\partial \vec{\phi} \cdot \partial \vec{\phi}) + \frac{1}{2} B\left(\vec{\phi} \cdot \vec{\phi}\right) (\vec{\phi} \cdot \partial \vec{\phi})^2 - V\left(\vec{\phi} \cdot \vec{\phi}\right) \\ &= \frac{1}{2} \left[A + (v+h)^2 B \right] (\partial h)^2 + \frac{1}{2} (v+h)^2 A (\partial \vec{n})^2 - V \\ & \swarrow \end{aligned}$$
Correlations at every order between h, v

$$\vec{\phi} = (v+h) \, \vec{n} \, (\pi) \, ; \quad \vec{\phi} \cdot \vec{\phi} = (v+h)^2$$

HEFT cannot always be written as SMEFT:

Higgs2023 30/Nov/2023

HEFT allows most general parameterization of Higgs potential

What goes wrong by only working with SMEFT?

- Potential errors in interpretation. Say we see a deviation from the SM
 - In SMEFT, SU(2) symmetry typically means deviations are correlated
 - In HEFT this is not necessarily the case
- We should make *all* motivated measurements
 - Just because 2→2 might look SM, that does not imply 2→3, 2→4,... necessarily are (see, e.g., Falkowski, Rattazzi 1902.05936; Cohen, Craig, Lu, Sutherland 2108.0324)

HEFT scenarios

General lore: new particles that significantly contribute to EW symmetry breaking are captured by HEFT

...but that lore is not general enough...for example

HEFT scenarios

General lore: new particles that significantly contribute to EW symmetry breaking are captured by HEFT

...but that lore is not general enough...for example

HEFT required whenever a particle receives more than half its mass from the Higgs

Banta, Cohen, Craig, Lu, Sutherland 2110.02967

Scalars

Brian Henning

HEFT scenarios

General lore: new particles that significantly contribute to EW symmetry breaking are captured by HEFT

...but that lore is not general enough...for example

HEFT required whenever a particle receives more than half its mass from the Higgs

Banta, Cohen, Craig, Lu, Sutherland 2110.02967

But perhaps the most motivated place for HEFT* is: <u>high-multiplicity</u> EW boson processes

*this is also well-motivated for SMEFT, as we'll see

Brian Henning

Higgs2023 30/Nov/2023

$4\pi v$ and the LHC

Scale of unitarity violation: HEFT: $4\pi v \sim 3 \text{ TeV}$ SMEFT: $4\pi \Lambda \sim \text{arbitrary}$

Process	Unitarity Violating Scale
$h^2 Z_L \leftrightarrow h Z_L$	$66.7 \text{ TeV}/ \delta_3 - \frac{1}{3}\delta_4 $
$hZ_L^2 \leftrightarrow Z_L^2$	94.2 TeV/ $ \delta_3 $
$hW_LZ_L \leftrightarrow W_LZ_L$	141 TeV/ $ \delta_3 $
$hZ_L^2 \leftrightarrow hZ_L^2$	9.1 TeV/ $\sqrt{\left \delta_3 - \frac{1}{5}\delta_4\right }$
$hW_LZ_L \leftrightarrow hW_LZ_L$	$11.1 \text{ TeV}/\sqrt{\left \delta_3 - \frac{1}{5}\delta_4\right }$
$Z_L^3 \leftrightarrow Z_L^3$	$15.7 \text{ TeV}/\sqrt{ \delta_3 }$
$Z_L^2 W_L \leftrightarrow Z_L^2 W_L$	$20.4 \text{ TeV}/\sqrt{ \delta_3 }$
$hZ_L^3 \leftrightarrow Z_L^3$	$6.8 \text{ TeV}/ \delta_3 - \frac{1}{6}\delta_4 ^{\frac{1}{3}}$
$hZ_L^2W_L \leftrightarrow Z_L^2W_L$	$8.0 \text{ TeV}/ \delta_3 - \frac{1}{6}\delta_4 ^{\frac{1}{3}}$
$Z_L^4 \leftrightarrow Z_L^4$	$6.1 \text{ TeV}/ \delta_3 - \frac{1}{6}\delta_4 ^{\frac{1}{4}}$

Unitarity violation involving Higgs trilinear and quartic Chang, Luty 1902.05556

Brian Henning

Higgs2023 30/Nov/2023

Multi-boson processes

- ⇒ Unitarity violation in many channels
- ⇒ Multi-boson processes sensitive probes
- ⇒ Numerous exciting (and challenging) opportunities

 high-multiplicity
 polarization tagging
 hadronic decays

Brian Henning

HIggs2023 30/INOV/2023

BH, Lombardo, Riembau, Riva Higgs without Higgs

Brian Henning

Brian Henning

Higgs2023 30/Nov/2023

37

Building EFTs, and knowing you've thought of <u>everything</u>

...or...

how I learned to count

all possible interactions $\lambda O(p, \partial) \sim \lambda \phi^k \partial^* \iff k + \frac{1}{2} + \frac{1}{2$ $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}}{\Lambda^{\Delta_{i}-4}} \mathcal{O}_{i} \quad \text{Heff} \quad \sim \sum_{i}$ $(P_1+P_2)^2 \sim (P_1+P_2) (P_3+P_4)$ An operator specifies an interaction **HENCE** $Tr(W^3_{\mu\nu}) \sim \frac{Tr}{\xi} \sim p^3$ All possible operators = all possible interactions **Brian Henning**

Higgs2023 30/Nov/2023

all possible interactions

Experiment sees interactions \Leftrightarrow Measures scattering amps

 Measures scattering amps (S-matrix)

 $\mathcal{N} \sim f(P_1, P_2, P_3, P_4)$

all possible interactions

P

Experiment sees interactions \Leftrightarrow Measures scattering amps

 Measures scattering amps (S-matrix)

$$\left\{ \begin{array}{c} f_{1} \\ f_{2} \\ f_{3} \\ f_{4} \end{array} \right\} \sim \left\{ f_{\left(P_{1}, P_{2}, P_{3}, P_{4} \right)} \right\} \quad \begin{array}{c} \text{Not all functions} \\ \text{independent!} \end{array} \right\}$$

e.g.
$$f_2(p_i) = f_1(p_i) + (p_1 + p_2 + p_3 + p_4)g(p_i) \simeq f_1(p_i)$$

= 0 by momentum conservation

all possible interactions

P

Experiment sees interactions \Leftrightarrow Measures scattering amps

⇒ Measures scattering amps (S-matrix)

$$\left\{ \begin{array}{c} f_{1} \\ f_{2} \\ f_{3} \\ f_{4} \end{array} \right\} \sim \left\{ \left(P_{1}, P_{2}, P_{3}, P_{4} \right) \right\} \\ \begin{array}{c} \text{Not all functions} \\ \text{independent!} \end{array} \right\}$$

e.g.
$$f_2(p_i) = f_1(p_i) + (p_1 + p_2 + p_3 + p_4)g(p_i) \simeq f_1(p_i)$$

= 0 by momentum conservation

PROBLEM: determine all independent amplitudes in the SM CRUCIAL: "independent" ⇔ rules governing S-mat

Brian Henning

Higgs2023 30/Nov/2023 BH, Lu, Melia, Murayama 1706.08520 42

$$\begin{array}{c} \textbf{EFT operator basis}\\ \mathcal{L} = \sum_{i} c_{i} \mathcal{O}_{i} \ , \ S = \int d^{d}x \, \mathcal{L}(x) \ , \ Z = \int D\phi \, e^{iS}\\ \textbf{Lorentz invariance} \quad \Leftrightarrow \quad \mathcal{O}_{i} \ \textbf{are Lorentz scalars}\\ \textbf{Translation invariance} \quad \Leftrightarrow \quad \textbf{can integrate by parts}\\ \left(\int dx \, \partial_{\mu} \mathcal{O}^{\mu}(x) = 0\right)\\ \textbf{On-shell} \quad \Leftrightarrow \quad \textbf{EOM/field redefinitions} \end{array}$$

Equivalence relations for operator basis follow from the S-matrix!

Higgs2023 30/Nov/2023

EFT operator basis

Basic questions: 1) How many ops? 2) What are they?

Find a partition function

operator basis \Leftrightarrow S-matrix

- \Rightarrow spactime symmetry
- \Rightarrow can use group theory!

EFT operator basis

Basic questions: 1) How many ops? 2) What are they? Find a partition function

"Hilbert series"

operator basis \Leftrightarrow S-matrix

- \Rightarrow spactime symmetry
- \Rightarrow can use group theory!

$$\mathcal{H} = \operatorname{Tr}_{\mathcal{K}} \widehat{w} = \sum_{\mathcal{O} \in \mathcal{K}} q^{\Delta(\mathcal{O})} = 1 + c_1 q^1 + c_2 q^2 + \cdots$$

$$\mathcal{K} = \text{operator basis}$$

$$\mathcal{C}_{\Delta} = \# \text{ of ops of mass dimension } \Delta$$

$$\left[\operatorname{compare} Z = \operatorname{Tr}_{\mathcal{H}} \widehat{U} = \sum_{|i\rangle \in \mathcal{H}} \langle i|e^{-\beta\widehat{H}}|i\rangle = \sum_{\Delta} c_{\Delta} q^{\Delta}, \ q \equiv e^{-\beta} \right]$$

$$\underset{\text{Higs2023 30/Nov/2023}}{\operatorname{Higs2023 30/Nov/2023}} \qquad 45$$

Hilbert series ingredients

	Field	Lorentz Group	$SU(3)_C$	$U(1)_{\rm EM}$	dim
	u_L , u_R		3	$\frac{2}{3}$	<u>3</u>
	$d_L \;,\; d_R$	$(\frac{1}{2}, 0)$ $(0, \frac{1}{2})$	3	$-\frac{1}{3}$	
	$ u_L \;,\; (u_R)$	(2,0), $(0,2)$	1	0	2
	$e_L \;,\; e_R$		1	-1	
	$G_L \;,\; G_R$		8	0	
	$W^{\pm}_L \;,\; W^{\pm}_R$	(1, 0) $(0, 1)$	1	± 1	9
	Z_L , Z_R	(1,0), $(0,1)$	1	0	2
	A_L , A_R		1	0	
ſ	V^{\pm}	$(1 \ 1)$	1	± 1	1
٠ ٦	V^z	$(\overline{2},\overline{2})$	I	0	1
	h	(0, 0)	1	0	1
			<i>1</i> ± 7		
	1110	1221AG M			
ີໄລາ	n split	into lo	naitu	dina	
			igitu		L _
10	irans	verse co	ombc	ment	,S -

 \Rightarrow Higgs mechanism!

Everything fixed upon specifying particle content and their representations

Higgs2023 30/Nov/2023

HEFT results

Agrees with NLO bases in literature \checkmark (some minor mistakes found; caveat that $t_{y}^{3} \neq Q$)

Buchalla, Cata, Krause: Brivio, Gonzalez-Fraile, Gonzalez-Garcia, Merlo; Sun. Xiao. Yu

Easily go to $N^{k}LO$, k > 1For N²LO. see Sun. Xiao. Yu 2210.14939

10

dim

4

5

6

7

8

4

4

6

 (ν) HEFT

 $2 + 2T^2 + T^4$

 $2T + T^2 + T^3$

 $2 + 2T^2$

T

1

 $2 + 4T + 2T^2$

 $6 + 2T + 2T^2$

4 + 2T

small caveat $T = U\sigma_3 U^{\dagger}$ $\langle T \rangle : SU(2)_V \to U(1)_V$ $U(1)_V = Q - \frac{1}{2}(B - L) \neq U(1)_Q$ Not the same as $U(1)_{0}$ (coincides in B-L = 0 sector)

Power counting from Hilbert series

The "natural" expansion of Hilbert series is in

 $k_1 + k_2 + k_3 + k_4 = k$ $\partial^{k_1} H \partial^{k_2} H \partial^{k_3} W \partial^{k_4} H$

(1) Scaling dimension (powers of energy)(2) Number of fields

Precisely the organizational scheme used for "primary observables" (Chang, Chen, Liu, Luty 2212.06215)

Hilbert goes to town

Constructing operators

Example: all ops involving 2 H's, 2 W's, and k derivatives?

 $k_1 + k_2 + k_3 + k_4 = k \qquad \qquad \text{degree k polynomial} \\ \partial^{k_1} H \partial^{k_2} H \partial^{k_3} W \partial^{k_4} W \Leftrightarrow f(p_1, p_2, p_3, p_4) H(p_1) H(p_2) W(p_3) W(p_4)$

Constructing operators Example: all ops involving 2 H's, 2 W's, and k derivatives? $k_1 + k_2 + k_3 + k_4 = k$ degree k polynomial $\partial^{k_1} H \partial^{k_2} H \partial^{k_3} W \partial^{k_4} W \Leftrightarrow f(p_1, p_2, p_3, p_4) H(p_1) H(p_2) W(p_3) W(p_4)$ Scalars: BH, Lu, Melia, Murayama 1706.08520 Arbitrary spin: BH, Melia 1902.06747, 1902.06754 subject to: See also: Dong, Ma, Shu 2103.15837 Durieux, Kitahara, Machado, Shadmi, Weiss 1909.10551 \Rightarrow momentum conservation $\sum p_i^{\mu} = 0$ \Rightarrow on-shell $p_i^2 = 0$ $f(\Lambda p_i) = f(p_i)$ \Rightarrow Lorentz invariance $\Lambda \in SO(3,1)$

Brian Henning

Higgs2023 30/Nov/2023

Constructing operators BH, T. Melia 1902.06747 1902.06747

- \Rightarrow momentum conservation
- \Rightarrow on-shell
- \Rightarrow Lorentz invariance

 $\left\{ \begin{array}{c} \text{constraints define a manifold in phase space} \\ \delta(p_1^2) \cdots \delta(p_n^2) \times \delta^4 \left(P^{\mu} - (p_1^{\mu} + \cdots + p_n^{\mu}) \right) \\ \text{use spinors} \\ \delta^4 \left(P_{\alpha \dot{\alpha}} - (\lambda^1 \widetilde{\lambda}^1 + \cdots + \lambda^n \widetilde{\lambda}^n)_{\alpha \dot{\alpha}} \right) \end{array} \right\}$

Constructing operators BH, T. Melia 1902.06747 1902.06747

- \Rightarrow momentum conservation
- \Rightarrow on-shell
- ⇒ Lorentz invariance

constraints define a manifold in phase space $\delta(p_1^2) \cdots \delta(p_n^2) \times \delta^4 \left(P^{\mu} - (p_1^{\mu} + \cdots + p_n^{\mu}) \right)$ use spinors $\delta^4 \left(P_{\alpha \dot{\alpha}} - (\lambda^1 \widetilde{\lambda}^1 + \cdots + \lambda^n \widetilde{\lambda}^n)_{\alpha \dot{\alpha}} \right)$

> Want a set of class functions on the manifold → generalized spherical harmonics ↓
> operators ⇔ harmonics on phase space

Constructing operators BH, T. Melia 1902.06747 1902.06754

- momentum conservation
- on-shell
- Lorentz invariance

$$P_{\alpha\dot{\alpha}} = \begin{pmatrix} M & 0 \\ 0 & M \end{pmatrix} = \begin{pmatrix} \left| \vec{\lambda}_{1} \right|^{2} & \vec{\lambda}_{1} \cdot \vec{\lambda}_{2} \\ \vec{\lambda}_{2} \cdot \vec{\lambda}_{1}^{*} & \left| \vec{\lambda}_{2} \right|^{2} \end{pmatrix}$$
geometry
$$r^{2} = \vec{v}^{2}$$
basically two
$$r^{2} = \vec{u}^{2}$$
orthogonal
$$r^{2} = \vec{u}^{2}$$
G/H = *U(N)/U(N-2)*
spheres
$$0 = \vec{v} \cdot \vec{u}$$
Stiefel manifold Grassmannian C Stiefel

rassmannian \subset Stiefel

$$G_{2,N}(\mathbb{C}) = U(N) / U(N-2) \times U(2)$$

Brian Henning

constraints define a manifold in phase space $\delta(p_1^2)\cdots\delta(p_n^2)\times\delta^4(P^\mu-(p_1^\mu+\cdots+p_n^\mu))$ use spinors $\delta^4 \left(P_{\alpha\dot{\alpha}} - (\lambda^1 \widetilde{\lambda}^1 + \dots + \lambda^n \widetilde{\lambda}^n)_{\alpha\dot{\alpha}} \right)$

> Want a set of class functions on the manifold -> generalized spherical harmonics operators \Leftrightarrow harmonics on phase space

"conformal – helicity duality"

SU(2,2) imes U(N) (math world: reductive dual pairs/Howe duality/oscillator representation)

Higgs2023 30/Nov/2023

Phase space harmonics

Higgs2023 30/Nov/2023

The families of operators belong to the same Grassmann harmonic!

BH, T. Melia 1902.06747, 1902.06754

Method used to construct

Explains structure of EFT non-renormalization/helicity selection rules

Cheung & Shen 1505.01844 Azatov, Contino, Machado, Riva 1607.05236 Jiang, Shu, Xiao, Zheng 2001.04481

Li, Ren, Shu, Xiao, Yu 2005.00008, 2012.11615 Dong, Ma, Shu, Zheng 2202.08350

dim-8 ops in SMEFT Brian Henning

Harmonics and tableaux methods

<u>Massless</u>

Phase space geometry

BH, Melia 1902.06747, 1902.06754; Larkoski, Melia 2008.06508

SMEFT from on-shell:

Ma, Shu, Xiao 1902.06752; Jiang, Shu, Xiao, Zheng 2001.04481

Dim-8 SMEFT

Li, Ren, Shu, Xiao, Yu, Zheng 2005.00008, 2012.11615

Massive

On-shell massive amplitudes

Durieux, Kitahara, Shadmi, Weiss 1909.10551; ibid + Machado 2008.09652; Falkowski, Isabella, Machado 2011.05339

Tableaux for any mass and spin

Dong, Ma, Shu 2103.15837

HEFT

Sun, Xiao, Yu 2206.07722, 2210.14939; Dong, Ma, Shu, Zhou 2211.16515

+... Brian Henning

The powerful methods of group theory, spinor helicity, and on-shell techniques have solved and systematized problems unthinkable just a few years ago

$$\begin{split} \mathcal{A}^{I}_{\{\dot{\alpha}\}}\left(\{\epsilon_{s_{i}}\}\right) &\subset \quad \boxed{11} \times \boxed{22} \times \boxed{33} \\ &= \underbrace{112}_{233} \oplus \underbrace{1122}_{333} \oplus \underbrace{1123}_{233} \oplus \underbrace{11133}_{222} \oplus \underbrace{11233}_{223} \oplus \underbrace{111333}_{222} \oplus \underbrace{112233}_{333} \oplus \underbrace{112233}_{233} \oplus \underbrace{1122333}_{333} \oplus \underbrace{11223333}_{333} \oplus \underbrace{1123333}_{333} \oplus \underbrace{11233333}_{333} \oplus \underbrace{11233333}_{333} \oplus \underbrace{1123333}_{333} \oplus \underbrace{11233333}_{333}$$

Complete NNLO Operator Bases in Higgs Effective Field Theory

 Hao Sun, Ming-Lei Xiao, Jiang-Hao Yu

 Comments:
 419 pages, 3 tables

 Subjects:
 High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Theory (hep-th)

 Cite as:
 arXiv:2210.14939 [hep-ph]

Higgs2023 30/Nov/2023

isomorphic problems

Other applications: EFT

operators/EFT amplitudes

phase space (Grassmannian) harmonics and EFT positivity

generalize to massive particles (hard, but useful!)

$$\delta(p_1^2 - m_1^2) \cdots \delta(p_k^2 - m_k^2) \delta^4(P^\mu - \sum_i p_i^\mu)$$

Massive phase space manifold: Is there a "nice" geometric formulation?

numerous other questions:identical particles (symmeterization); non-renormalization thms;Brian Henningefficient construction algorithms; amplitudes in d = 2+1; ...Brian Henning61

THANK YOU!

BACKUP

upshot on Stiefel harmonics

harmonics labeled by Young diagrams (with at most two rows)

these dictate specific polynomials in the spinors

comments:

- 1) each shape corresponds to operators
- 2) multiple operators belong to same shape
 - a) these involve particles with different

spin

3) these operators are conformal primaries

Construct states algebraically

e.g.
$$|l,\mu=(\mu_1,\ldots,\mu_3)
angle\simeq F^3$$

now apply U(N) lowering op:

$$L_{-}|l,\mu\rangle \sim |l,\mu'\rangle \simeq \widetilde{\psi}F\psi$$

Brian Henning

