

Improved measurement of $\eta' \to 4\pi$

Zihan Zhao¹, Qin Chang¹ and Shuangshi Fang²

¹Henan Normal University, Xinxiang

²Institute of High Energy Physics, Beijing

HFP Group Meeting

2022.10.08

BAM-00622: new Referee Committee formed

Forum: BAM-00622: Improved measurement of etap to 4pions, by Zihan Zhao et al.

Date: Jul 26, 10:00

From: Dayong Wang < Dayong Wang>

Dear all.

We are pleased to announce that a new referee committee is formed for

"BAM-00622: Improved measurement of etap to 4pions", by Zihan Zhao et al.

Three referees are :

Yingchun Zhu, <yingchun@ustc.edu.cn>, USTC (Chair) Liqing Qin, <qinlq@mailbox.gxnu.edu.cn>, GXNU Liangchen Liu, liulc@ihep.ac.cn>, HAUT

Many thanks for the three referees' kind help.

According to the BESIII publication rule, referees are required to respond to any communications in an interval of no longer than 2 weeks.

The Link of HyperNews forum :

http://hnbes3.ihep.ac.cn/HyperNews/get/paper622.html

The memo in docDB:

https://docbes3.ihep.ac.cn/DocDB/0011/001120/004/Memo V1.6.pdf

The talk in P&S meeting in Indico:

https://indico.ihep.ac.cn/event/17229

Memo version 2.1

BESIII Analysis Memo

BAM-622

September 7, 2022

Improved measurement of $\eta' \to 4\pi$

Zihan Zhao^a, Wenjing Zheng^b, and Shuangshi Fang^b, Fang Liu^b, and Qin Chang^a

^aHenan Normal University, Xinxiang 453000, P. R. China ^bInstitute of High Energy Physics, Beijing 100049, P. R. China

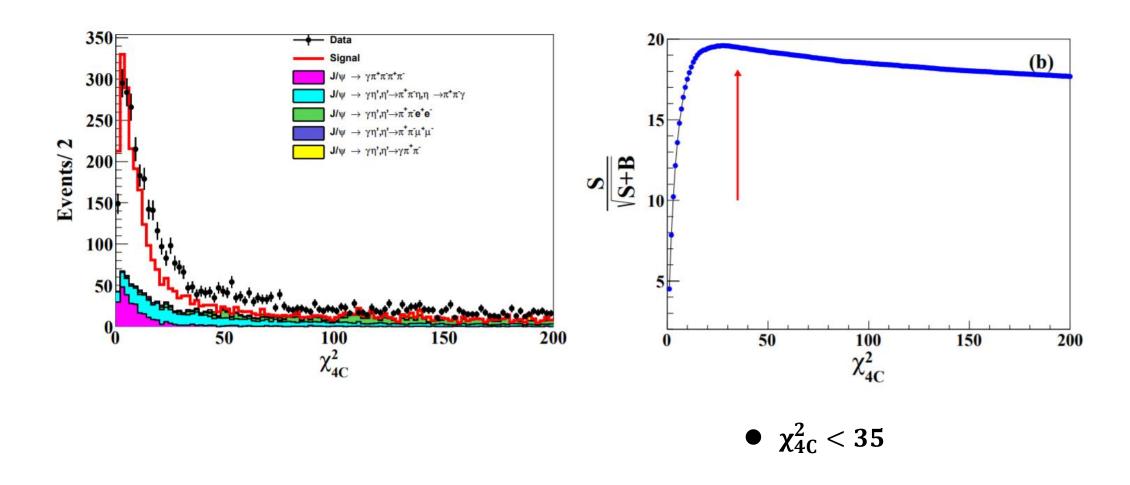
Internal Referee Committee

Yingchun Zhu (Chair)^c, Liqing Qin^d, and Liangchen Liu^e

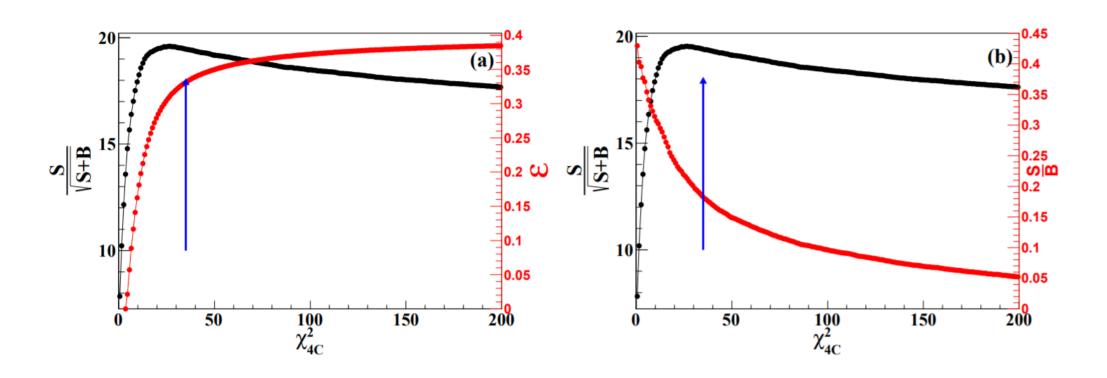
 $^{\mathrm{c}}$ USTC $^{\mathrm{d}}$ GXNU $^{\mathrm{e}}$ HAUT

11

13


HN: http://hnbes3.ihep.ac.cn/HyperNews/get/paper622.html

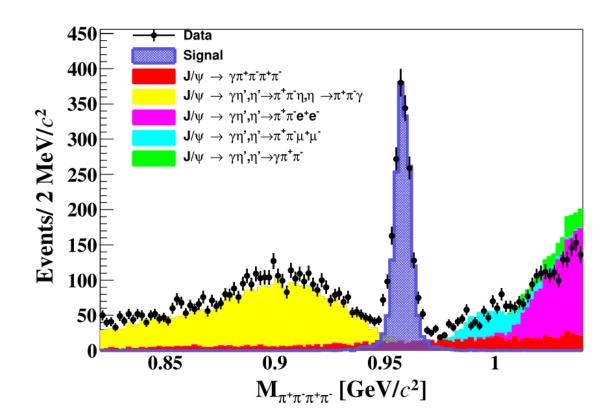
Abstract


Using a sample of $(10087\pm44)\times10^6$ J/ψ events collected with the BESIII detector, the decays $\eta'\to\pi^+\pi^-\pi^+\pi^-$, $\eta'\to\pi^+\pi^-\pi^0\pi^0$, and $\eta'\to4\pi^0$ are studied via $J/\psi\to\gamma\eta'$. A clear η' peak is observed in the $\pi^+\pi^-\pi^+\pi^-$ and $\pi^+\pi^-\pi^0\pi^0$ mass spectra, respectively. The branching fractions of $\eta'\to\pi^+\pi^-\pi^+\pi^-$ and $\eta'\to\pi^+\pi^-\pi^0$ are measured to be $(8.53\pm0.25(stat.)\pm0.23(sys.))\times10^{-5}$ and $(2.18\pm0.12(stat.)\pm0.10(sys.))\times10^{-4}$. No significant η' signal is observed in the $4\pi^0$ invariant mass spectrum. With a Bayesian approach, the upper limit on the branching fraction is determined to be $\mathcal{B}(\eta'\to4\pi^0)<1.28\times10^{-5}$ at the 90% confidence level. With improved precision, the results are consistent with the previous measurements.

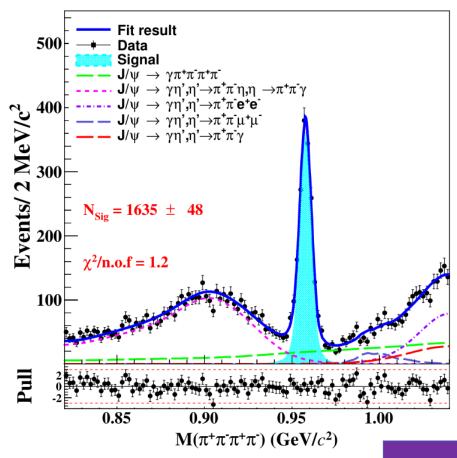
What's new?(II)

Updated result of $\eta' \to \pi^+\pi^-\pi^+\pi^-$

Optimization result



 \Box (a) The red line represents the detection efficiency. (b) The red line shows the value of S/B.


Background Study

Q3. Table 4: the N_{norm} of the first channel is more than the second channel. But in Fig.3, I see the red is less than yellow. Please explain that.

Re: Sorry for the typo. For the decay channel of $J/\psi \to \gamma \pi^+ \pi^- \pi^+ \pi^-$, the number of N_{norm} is 1903 ± 44 . In order to reduce the influence of statistical uncertainty, We then generated the 12×10^6 exclusive MC samples for this background process. And the fitting result and systematic uncertainty of $\eta' \to \pi^+ \pi^- \pi^- \pi^-$ have been updated in our updated MEMO.

Fitting result of $M(\pi^+\pi^-\pi^+\pi^-)$

- Signal: PDF shape
- Background:

PDF shape of continuous background($J/\psi \rightarrow \gamma \pi^+ \pi^- \pi^+ \pi^-$),

PDF shape of peak background($J/\psi \to \gamma \eta', \eta' \to \pi^+\pi^-\eta, \eta \to \pi^+\pi^-\gamma$),

PDF shape of peak background($J/\psi \rightarrow \gamma \eta', \eta' \rightarrow \pi^+\pi^-e^+e^-$),

PDF shape of peak background($J/\psi \rightarrow \gamma \eta'$, $\eta' \rightarrow \pi^+ \pi^- \mu^+ \mu^-$),

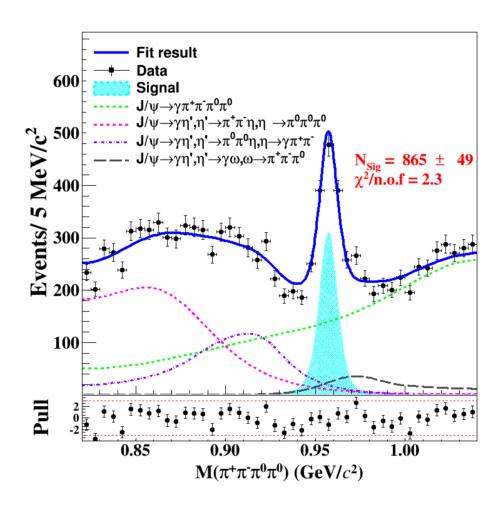
PDF shape of peak background($J/\psi \rightarrow \gamma \eta', \eta' \rightarrow \gamma \pi^+ \pi^-$).

$$\blacksquare \mathcal{B}(\eta' \to \pi^+ \pi^- \pi^+ \pi^-) = \frac{N_{sig}}{N_{J/\psi} \cdot B(J/\psi \to \gamma \eta') \cdot \varepsilon}$$

Mode	N_{sig}	ε(%)	ℬ(×10⁻⁵)
$\eta' \rightarrow \pi^+\pi^-\pi^+\pi^-$	1635±48	36.2	8.53±0.25 (<i>stat</i>)

What's new?(III)

Updated result of $\eta' \to \pi^+\pi^-\pi^0\pi^0$


Q4. Table 3 and Table 4: maybe I misunderstand something here, so correct me if I am wrong: N_{sel} is the number of events surviving that background MC, N_{norm} is the size of that same background MC once your fit scaled it to the appropriate size. Is that right? I am confused, because sometimes $N_{sel} > N_{norm}$, and sometimes $N_{sel} < N_{norm}$. If you use the MC in your fit, I believe you want the scaling factor on that MC (your fit constant) to be <<1 ideally (so that you can safely ignore the error bars on the MC lineshape).

Re: Yes, for those events who did not contributed to the η' mass region, I did not generate such a large sample to reduce the statistical uncertainty. Take $J/\psi \to \gamma \eta' (\eta' \to \pi^+ \pi^- \eta (\eta \to 3\pi^0))$ for example, most of these background events contributed to the low mass region below 0.9 GeV. Now I am generating another sample to reduce the statistical uncertainty, but I believed that its impact on the results is small.

Table 4: The residual events of the exclusive MC samples for the background channels. N_{gen} is for the number of generated MC events, N_{sel} is for the selected events with the same criteria as the data, N_{norm} is the number of normalized events.

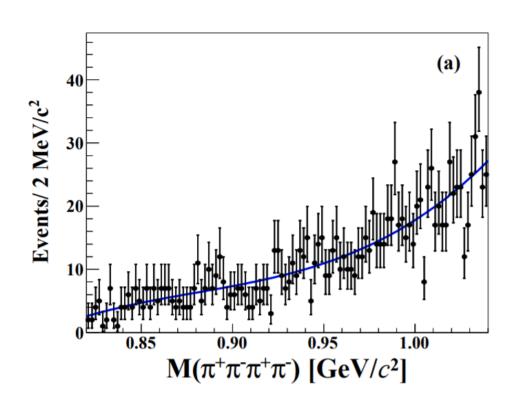
Decay mode	$N_{gen}(10^4)$	N_{sel}	N_{norm}
$J/\psi o \gamma \pi^+ \pi^- \pi^0 \pi^0$	8022	6373 ± 80	6352 ± 80
$J/\psi \to \gamma \eta', \eta' \to \pi^+\pi^-\eta, \eta \to \pi^0\pi^0\pi^0$	945	3093 ± 56	2284 ± 48
$J/\psi \to \gamma \eta', \eta' \to \pi^0 \pi^0 \eta, \eta \to \gamma \pi^+ \pi^-$	560	$26728 {\pm} 163$	2298 ± 48
$J/\psi \to \gamma \eta', \eta' \to \gamma \omega, \omega \to \pi^+ \pi^- \pi^0$	400	$2488 {\pm} 50$	726 ± 27

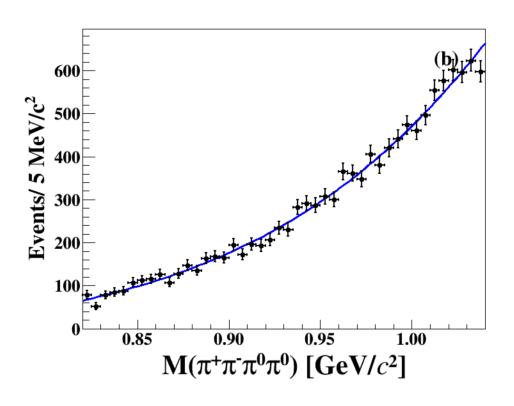
Fitting result of $M(\pi^+\pi^-\pi^0\pi^0)$

- Signal: PDF shape
- Background:

PDF shape of continuous background($J/\psi \rightarrow \gamma \pi^+ \pi^- \pi^0 \pi^0$),

PDF shape of peak background($J/\psi \to \gamma \eta', \eta' \to \pi^+ \pi^- \eta, \eta \to \pi^0 \pi^0 \pi^0$),

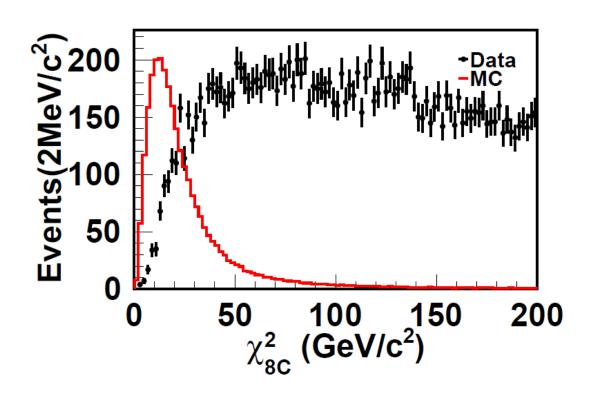

PDF shape of peak background($J/\psi \rightarrow \gamma \eta', \eta' \rightarrow \pi^0 \pi^0 \eta, \eta \rightarrow \pi^+ \pi^- \gamma$),


PDF shape of peak background($J/\psi \rightarrow \gamma \eta', \eta' \rightarrow \gamma \omega, \omega \rightarrow \pi^+ \pi^- \pi^0$).

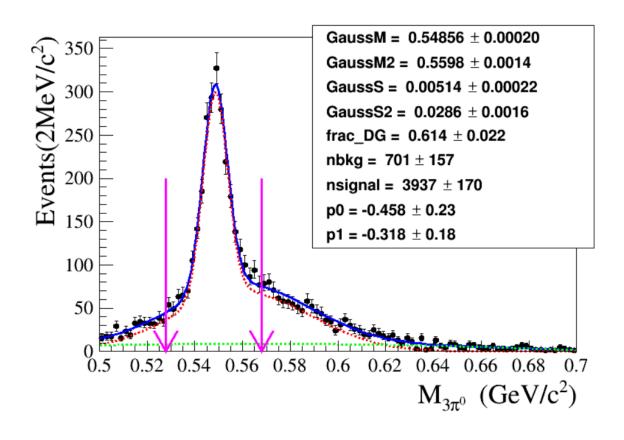
$$\blacksquare \ \mathcal{B}(\eta' \to \pi^+ \pi^- \pi^0 \pi^0) = \frac{N_{sig}}{N_{J/\psi} \cdot \mathcal{B}(J/\psi \to \gamma \eta \prime) \cdot \varepsilon \cdot \mathcal{B}(\pi^0 \to \gamma \gamma) \mathcal{B}(\pi^0 \to \gamma \gamma)}$$

Mode	N_{sig}	ε(%)	ℬ (×10^{−4})
$\eta' \to \pi^+ \pi^- \pi^0 \pi^0$	865±49	7.8	2.18±0.12(stat)

Systematic uncertainty from continuous background shape

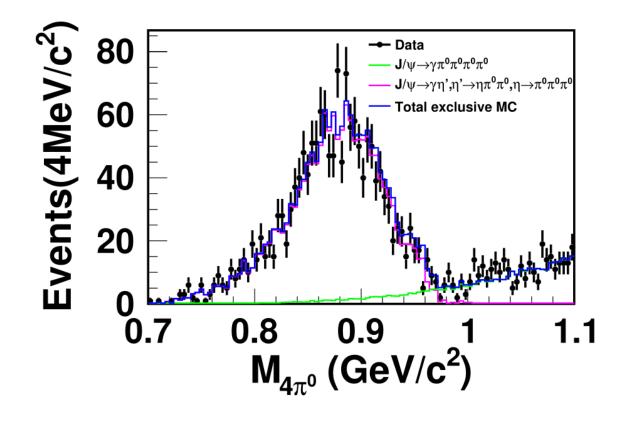

□ Fit of $J/\psi \to \gamma \pi^+ \pi^- \pi^+ \pi^-$ and $J/\psi \to \gamma \pi^+ \pi^- \pi^0 \pi^0$ PHSP MC. The solid blue line is the best fit result with a third-order Chebychev polynomial function.

Total Systematic Uncertainty


Sources	$\eta' o \pi^+\pi^-\pi^+\pi^-(\%)$	$\left \eta' \rightarrow \pi^+ \pi^- \pi^0 \pi^0 \left(\% \right) \right $
MDC tracking	2	1
Photon detection efficiency	0.5	2.5
Kinematic fit	0.6	0.2
Peak background shape	0.4	0.09
Continuous background shape	0.2	1.4
Veto $\eta(\omega)$ signal	-	2.8
$\mathcal{B}(J/\psi \to \gamma \eta')$	1.3	1.3
$\mathcal{B}(\pi^0 o \gamma \gamma)$	-	0.06
Number of J/ψ events	0.44	0.44
Generator Model	0.6	0.8
Total	2.7	4.4

What's new?(IV)

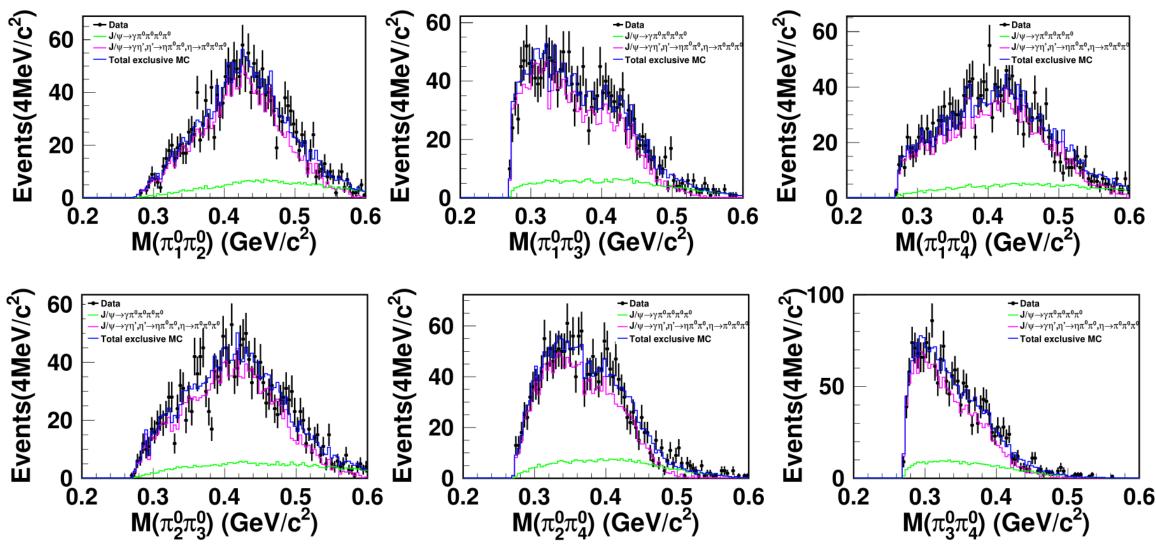
Updated result of $\eta' \to \pi^0 \pi^0 \pi^0$


- $> \chi^2_{8C} < 40$
- $\succ \chi_{4C}^2(\gamma \pi^0 \pi^0 \pi^0 \pi^0) < \chi_{4C}^2(\gamma \gamma \pi^0 \pi^0 \pi^0 \pi^0)$
- $> \chi_{4C}^2(\gamma \pi^0 \pi^0 \pi^0 \pi^0) < \chi_{4C}^2(\gamma \gamma \gamma \pi^0 \pi^0 \pi^0 \pi^0)$

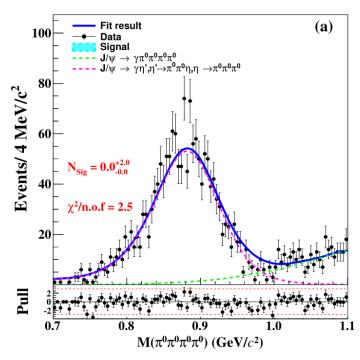
Veto η → π⁰π⁰π⁰:|M_{3π}⁰ − M_η^{PDG}| > 0.02GeV/c² (i = 1, 2, 3, 4)

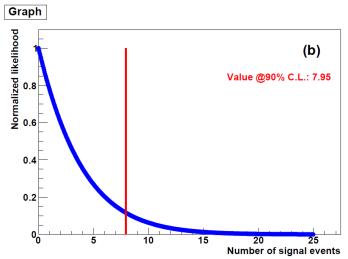
Background study

• The distribution of $4\pi^0$ mass spectrum for the main background channels:


> The **peaking** background events is from:

$$J/\psi
ightarrow \gamma \eta', \eta'
ightarrow \pi^0 \pi^0 \eta, \eta
ightarrow \pi^0 \pi^0 \pi^0$$


The **continuous** background events mainly comes from:


$$J/\psi
ightarrow \gamma \pi^0 \pi^0 \pi^0 \pi^0$$

MC and Data Comparison

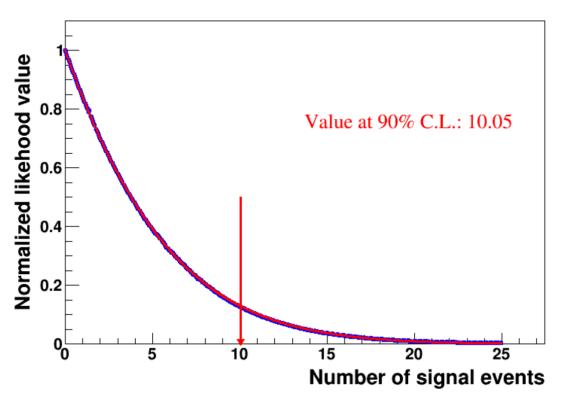
Fitting result of $M(\pi^0\pi^0\pi^0\pi^0)$

- Fit Model:
 - Signal: PDF shape
 - Background:

```
PDF shape of continuous background(J/\psi \to \gamma \pi^0 \pi^0 \pi^0 \pi^0),
PDF shape of peak background(J/\psi \to \gamma \eta', \eta' \to \pi^0 \pi^0 \eta, \eta \to \pi^0 \pi^0 \pi^0).
```

- Upper Limit:
 - We use a **Bayesian** method to calculate the Upper limits of the signal yields at the 90% confidence level in different hypotheses.
 - The maximum one, $N_{UL} = 7.95$, is used to evaluate the upper limit on the branching fraction.

Total Systematic Uncertainty


> Additive Systematic Uncertainties

Sou	$B^{UL} \times 10^{-5}$	
	$[0.7, 1.095] \text{GeV}/c^2$	1.01
Eit ranga	$[0.7, 1.105] \text{ GeV}/c^2$	1.12
Fit range	$[0.705, 1.1] \text{ GeV}/c^2$	1.01
	$[0.705, 1.095] \mathrm{GeV}/c^2$	1.01
	$[0.705, 1.105] \text{ GeV}/c^2$	1.02
Signal shape	MC shape convolution Gaussian	1.02
Continuous background shape	2_{nd} order polynomial	1.0
Peaking background shape	MC shape convolution Gaussian	1.26
The number of peaking background events	1465	1.15

> Multiplicative Systematic Uncertainties

Sources	$\boxed{\eta' \rightarrow 4\pi^0 \ (\%)}$
Photon detection efficiency	4.5
Kinematic fit	5.6
Veto $\eta \to \pi^0 \pi^0 \pi^0$	3.0
$\mathcal{B}(J/\psi o \gamma \eta')$	1.3
$\mathcal{B}(\pi^0 o\gamma\gamma)$	0.12
Number of J/ψ events	0.44
Generator Model	0.1
Total	8.0

Upper Limit of $\eta' \rightarrow 4\pi^0$

To conservatively estimate the upper limit of branching fraction, the systematic uncertainties are considered by convolving a **Gaussian** function into the normalized likelihood.

$$\begin{split} L'(N) &= \int_0^1 L(\frac{S}{\hat{S}}N) exp\left[-\frac{\left(S - \hat{S}\right)}{2\sigma_S^2}\right] dS \\ \mathcal{B}^{UL} &= \frac{N_{UL}}{N_{J/\psi} \cdot \mathcal{B}(J/\psi \to \gamma \eta') \cdot \varepsilon \cdot (\mathcal{B}(\pi^0 \to \gamma \gamma))^4} \end{split}$$

• Upper Limit: $\mathcal{B}(\eta' \to \pi^0 \pi^0 \pi^0 \pi^0) < 1.28 \times 10^{-5}$

Summary & Next to do

Using a sample of 10087M J/ψ events collected with the BESIII:

Mode	N_{sig}	$oldsymbol{arepsilon}(\%)$	$Br(\eta' o X)$ (this work)	$Br(\eta' o X)^{[1][2]}$ (pre.result)
$\eta' \to \pi^+\pi^-\pi^+\pi^-$	1635±48	36.2	$(8.53\pm0.25(stat.)\pm0.23(sys.))\times 10^{-5}$	$(8.53\pm0.69(stat.)\pm0.64(sys.))\times 10^{-5}$
$\eta' \to \pi^+\pi^-\pi^0\pi^0$	865±49	7.8	$(2.18\pm0.12(stat.)\pm0.10(sys.))\times 10^{-4}$	$(1.82\pm0.35(stat.)\pm0.18(sys.))\times 10^{-4}$
$\eta' \to \pi^0 \pi^0 \pi^0 \pi^0$	< 10.05	1.6	< 1.28× 10 ⁻⁵	< 4.94× 10 ⁻⁵

- ✓ The results of $\mathcal{B}(\eta' \to \pi^+\pi^-\pi^+\pi^-)$ 、 $\mathcal{B}(\eta' \to \pi^+\pi^-\pi^0\pi^0)$ and $\mathcal{B}(\eta' \to 4\pi^0)$ have been updated.
- ✓ With improved precision, the results are also consistent with the previous measurements.
- ✓ The first round questions from the two referees have been answered.

Next to do

- Measurement of Form Factor in $\eta' \to \pi^+\pi^-\pi^+\pi^-$.
- Draft is in preparation.

^[1] Phys. Rev. Lett. 113, 039903 (2014).

^[2] M.Ablikim et al.(BESIII Collaboration), Phys, Rev.D 101,032001(2020)