

国家重大科技基础设施规划项目

北京在线同位素分离丰中子束流装置

Beijing Isotope-Separation-On-Line Neutron-Rich Beam Facility (北京ISOL, BISOL)

> 柳卫平,代表BISOL合作组 中国原子能科学研究院

北京大学

2021年10月19日

一、北京ISOL简介

四、技术基础和实施条件

北京ISOL简介

双源驱动

- □ 新一代核物理大科学装置,采用堆器 双源驱动创新技术
- D 产生国际最强的不稳定核束,比国际 装置提高10倍
- D 产生聚变能谱的强流中子束,填补国际空白,实现材料测评自主可控

- □ 面向世界科技前沿:探索原子核新版图并认识新规律,揭秘宇宙元素 起源
- □ 面向国家重大需求:聚变等先进核 能系统国产材料辐照考验与重要核 数据研究

开拓原子核新版图,孕育重大核科技应用

开拓原子核新版图,孕育重大核科技应用

开拓原子核新版图,孕育重大核科技应用

开拓原子核新版图,孕育重大核科技应用

目前版图 中子滴线到氧 质子滴线到Z=91

Z=118, A=294

28

20

8

中子

50

66**Ca**

稳定核素不到300种

PF区:现有和在建

126

8000-10000种

超重核素

238**P**U

235

理论预言

ISOL+PF区:北京ISOL

实验室目前合成3000种左右

核物理可能的重大突破 (诺贝尔奖量级)

原子核新版图和新物理,发 现核物理新规律

使用国际最强丰中子束流,探 索中子滴线

探索天体核合成新路径、理 解宇宙元素起源

合成和研究快过程路径上丰中 子核素反应和衰变

探索合成超重核素新途径 高强度裂变束流品种,如 ⁹¹Kr、¹³²Sn的融合反应

北京ISOL装置的重大需求分析

需要中子和不稳定核数据

Nuclear Data Needs and Capabilities for Applications May 27-29, 2015 Lawrence Berkeley National Laboratory, Berkeley, CA USA

热堆-快堆-聚 变堆三步走 需要强流聚变 能谱中子束

 Image: Second second

核数据测量

必要性与紧迫性

- □ 重大科技前沿问题在国际存在激烈竞争,国际未来两大核物理超级装置之一的欧 洲EURISOL将在2030年前后开始建设
- □中国聚变工程实验堆(CFETR),预计2035年前后开工建设,国产材料性能数据库 不可分享,测评技术亟待实现自主可控;目前全球仅有的聚变中子辐照数据来自 上世纪八十年代0.02dpa,差距巨大
- □为使我国在ISOL型大科学装置与核物理国际前沿研究方面形成引领,为聚变堆材 料性能研究提供及时的重要测试数据,需要在2035年前后完成北京ISOL建设

解决方案:北京ISOL

ISOL+PF:反应堆或加速 器热中子引发²³⁵U裂变,在 线同位素分离(ISOL),裂变 碎片后加速后进行碎裂反应 (PF)。使PF产生的丰中子 束流强度比国际提高10倍

G 强流氘束轰击锂靶:通过 (d, n)反应产生聚变堆中子 能谱强流中子束,中子通量 达5x10¹⁴n/cm²/s,填补国 际空白

BISOL装置特色

- □ 堆器耦合,多模式运行,兼顾国际前沿与国家重大需求
- 1 北京ISOL拥有较长久的科学寿命,建成后将成为国际上最具竞争力的新一 代不稳定束流装置和聚变能谱强流中子束装置

北京ISOL的裂变率比国际最好装置高出数十倍,具有显著优势

装置/国家	北京ISOL 中国	CARIBU 美国	SPIRAL2 法国	TRIUMF 加拿大	SCRIT 日本
状态	规划中	运行	建设中	建设中	调试中
裂变率 (粒子/秒)	2X10 ¹⁵	10 9	1X10 ¹⁴	5X10 ¹³	2X10 ¹¹
产生技术	反应堆中子 ²³⁵ U靶5g	²⁵² Cf自发裂变	加速器中子 ²³⁸ U靶280g	光致裂变	光致裂变

由于北京ISOL利用已运行的中国先进研究堆,具有国际领先的性能价格比

装置/国家	BISOL 中国	FRIB 美国	RIBF 日本	FAIR 德国	EURISOL
建成年份	T 0 +6	2025	2010	2025	2035
造价(亿美元)	5	13	6	14	16
预计 ⁹¹ Kr强度(pps)	4×10 ¹¹	-	-	-	3×10 ¹⁰
预计 ¹³² Sn强度(pps)	5×10 ¹⁰	-	-	1×10 ⁸	9×10 ¹¹
预计 ⁷⁸ Ni强度(pps)	400	-	10	10	20
滴线核 ⁶⁶ Ca强度(pps)	4×10 -6	-	-	-	-

BISOL的建设目标

主要组成部分

- □ 反应堆或加速器中子靶源
- □ 强流氘离子/质子加速器
- □ 高功率靶站与核能材料辐照装置
- □ ISOL分离与输运
- □ 分离能实验区 (SEE)
- □ 后加速器
- □ 低能实验区 (LEE)
- □ PF分离器与中能实验区 (IEE)

关键技术指标

- 裂变率: 2X10¹⁵ /s (采用 5g ²³⁵U)
- 氘束流: 40 MeV, ~10 mA
- 中子通量: 5X10¹⁴ n/cm²/s (采用液态Li靶); 辐 照剂量: 15dpa/年
- ISOL质量分辨: 2000-20000

- 后加速能量: 20-150 MeV/u
- 典型裂变丰中子束流: ¹³²Sn(5×10¹⁰ pps),
 - ⁹¹Kr(4×10¹¹ pps), ⁸¹Ga(1×10⁹ pps)
- 典型PF极端丰中子束流:⁷⁸Ni(400 pps),滴
 线核⁶⁶Ca(4×10⁻⁶ pps)
 18

投资概算

北京 ISOL 投资估算为35.7亿元,项目计划建设周期为六年, 建筑面积48000m²,新增工艺设备6923台(套)

中国原子能科学研究院

- 口 创建于1950年,是我国核科学技术的 发祥地和核基础科研、国防核科研和 核能开发研究的创新基地
- 口7位两弹一星功勋奖章获得者、60余 位两院院士曾在这里学习和工作
- □ 四大科研平台:中国先进研究堆、中 国实验快堆、串列升级工程、核燃料 后处理放化实验设施
- □ 十一个国家/部委级创新中心和重点实 验室

- 口研究堆运行中心,具有研究型反应堆50年的运行经验,可以保证CARR堆稳定运行
- □目前完成建设ISOL型串列升级工程BRIF,其中包括ISOL装置和重离子超导后加 速,为BISOL的建造提供了人才和技术积累 21

共建单位——北京大学

- □ 1955年我国高校第一个核科学基地
- 口 多年来培养5000多名核科技高层次人才

山北京大学物理学院和重离子所团队在强流离
 子源、强流氘加速器、聚变堆材料辐照等方
 面有长期积累,完成多项低能加速器装置建
 设

□中国原子能科学研究院和北京大学在核物 理、加速器物理与技术、核技术应用以及相 应科学装置建设方面拥有高水平研究和工程 技术队伍

中国先进研究堆CARR

- 口功率60MW,高通量、多用途,最大中子 通量8×10¹⁴ n/cm²/s
- □ 2010年5月首次临界,2012年完成反应 堆引出裂变碎片原理验证实验
- D 2018年实现连续大功率运行,财政部开 始支持燃料经费
- 口 2022年起预计满功率稳定运行 200天左右

关键技术

- 口 反应堆放射性核束产生技术
- □ 强流D+离子源及氘离子RFQ加 速器技术
- □ 射频超导加速器技术
- □ 高分辨可调ISOL技术
- D 放射性核束实验与探测技术
- 十三五期间,在国家重大专项、 科技部重点研发、中核集团龙腾 项目支持下,开展自主预先研 究,结合中科院近物所等国内优 势单位联合攻关,所有关键技术 均已突破。

关键技术预先研究

通过近十年的持续技术攻关,掌握了全部的关键技术
 通过ISOL型装置和反应堆的运行,掌握了运行技术
 设计深度接近可研阶段

设计报告400页

堆内离子源换靶系统图册

北京ISOL得到国内外专家高度共识

通过香山科学会议,在国内核物理核技术 同行形成最大共识

- 对多个重大科学问题具有重要的意义,对我 国核能发展将会起到很好支撑作用
- 北京ISOL在十三五期间作为备选项目,列 入《国家重大科技基础设施建设》规划

♥ 急
国家发展和改革委员会 教育者学校者者部部
科学技术部
财助 政学院
中国 科学院
中国 工程
院
同家自然科学基金委员会
国家国际科技工业局
中央军委装备发展部
XXXXX(2016)2726 ♥

> 关于印发国家重大科技基础设施建设 "十三五"规划的通知

同步辐射光源,硬X射线自由电子激光装置,多模态跨尺度生物医 学成像设施,超重力离心模拟与实验装置,高精度地基投时系统。 (二)深化后备项目的筹备论证。对科学意义重大、国家需求 强烈、抢占科技创新制高点、预先研究较为充分并纳入综合评审的 设施,加强对其设施属性、建设紧迫性、科学目标、工程目标、技 术风险等的深化论证,开展国内外同类设施的对比分析,逐步形成 成熟的设施建设方案,按照设施建设紧迫性、方案成熟度和财力保 障状况 北京在线同位素分离丰中子束流装置 间,设施筹备论证的后备项目包括:北京在线同位素分离丰中子束 流装置,中国陆地生态系统观测实验网络,生物医学大数据基础设 施,作物表型组学研究设施,大气环境模拟系统等纳入专家综合评

北京ISOL得到国内外专家高度共识

通过国际咨询会,重要设计方案得到 国际专家认可——

- 基础科学重大目标与核能材料等需求目标有机结合;在相当一段时间内成为国际最高水准和有独到特点的大科学装置
- 在欧洲核物理学会年上评价为:国际 未来两大超级装置之一
- □ 通过国内用户会,全面满足基础和应
 用用户需求--
 - 是我国核科学研究在若干重要方面走向 国际引领的难得机遇;是基础科学前沿 和重大国家需求紧密结合的新型装置

发改委立项后,北京市、中核集团和北京大学,将从人力、财力等方面全力支持"北京 ISOL"建设,确保按时高质量完成项目建设

如项目获得国家发改 委正式批复落地北京 市,本市将给予地方 配套资金支持

音学位4关于中请北京在該同位素分离半中子來說該置項目 之持既愿的居长表示, 经认属研究, 建养有关意见活度如下: 经审论出同意,本由支持"北京在线国营业分离半中子来统 送置"项目中报国家重大科教基础改善中长期规划(2021-2035 年) 各達明日。 说明日后北京怀莱林合性国家科学中心现有有局 的资本平台修修形成协同互补关系,更好地定押订单集群的集

北京市发展和改革委员会 关于支持申报国家重大科技基础设施 备选项目的复函

中国原子能科学研究院:

支持情况

北京市发改委

北京市发展和改革委员会

京复贡(2020) 999 号

中国核工业集团有限公司文件

中核科发 [2018] 201号

关于下达中核集团集中研发项目"北京在线

同位素分离丰中子束流装置关键技术研究"

任务书的通知

经集团公司审查,原则同意 L北京在法国位董分离本中于家

道复置关键技术研究项目供施方能队现移研究任务书下达保障。

诸据此频量升展工作、并按图《中国核工业集团公司集中研发项 11管理组织》的要求,严厚项目实施和经费支急管理,确保完成

中核集团支持北京

ISOL关键技术研究

中国原子最外芽研究院:

位兵。

中核集团

北京大学

关于共同建设北京在线同位素分离 丰中子束流装置的函

實院提出的北京在线同位素分离丰中学来流装置(简称北京

IS(L), 于2016年入选图家重大科技基础设施建设"十三五"规

划,成为"十三五"期间该集道唯一的核科学领域项目,该装置

转火鲜明,可可时实现匆先国际科学前分和国家重大需求双重日

标、图标评估认为"北京 150L 将成为图际最高水成和有独列特

占约士科学慧智*、基"未来核物理领域国际上两大规模结果之

组织力量开展预先研究

和工程建设任务,并投

入资金、人才、物力和

北自〔2020〕15号

中國原子能科学研究院:

场地

签发人: 黄 如

北京大学

北京ISOL综合交叉平台的应用和效益

项目总结

- □ 北京ISOL可同时满足国际科学前沿竞争和国家聚变材料考验紧迫需求,是央企高校合作承担大科学装置建设运行的范例
- □ 国际首次采用反应堆和强流加速器相结合的创新思路,产生的极端丰中子束强度 比国际装置高出10倍以上,有望在国际上首次确定原子核存在的边界,使我国核 物理研究达到国际领先水平:核素图上拓展中国版图
- □利用该装置的氘加速器产生聚变能区强流中子,填补国际空白,为我国先进核能 发展提供国产材料考验平台,实现测评技术自主可控:聚变材料形成中国数据
- □利用反应堆或加速器中子,具有国际领先的性能价格比,通过十年的预先研究特别在十三五期间,各项关键技术都取得重要突破:项目基础好、可行性高
- □ 北京ISOL如能在2030年前完成建设,有望使得我国在ISOL型大科学装置和上述 国际前沿问题研究方面形成国际引领,为我国聚变堆所需的国产材料性能测评与 关键核数据测量提供急需平台:国际一流核科技研究建成中国中心

谢谢各位专家!

北京大学研制的四杆型200 MHz RFQ 加速器已经成功出束,该加速器长度为2.7 m,加速D+到2 MeV,输出流强达到15 mA,所需要的射频功率达到300 kW,并已经实现D+打Be 靶产生中子的实验研究,可以产生2.4×10¹¹ n/s 的快中子,初步 开展了热中子成像技术的研究,在2×10⁴ n/cm²/s 的注量下取得了较好的中子成像照片。

串列升级工程——为北京ISOL奠定技术基础

2015年投入使用,成功产生³⁸K不稳定束流;2016年完成回旋加速器质子束首批物理 实验,同年工程正式验收;2020年开展首次放射性核束物理实验,国际首次发现原 子核存在β-γ-α新衰变模式。

世界各科技大国重点部署核科学大型装置

关键技术预先研究

核物理处于物质科学前沿,核科学引领新型能源开 发;核物理向纵深发展,核技术向广度发展,孕育重 大突破、科技强国均重点部署 中子和高速带电粒子束流,可产生新核素,可用于先 进反应堆材料性能测评 极端不稳定核区的核物理,将导致原子核极限和超 重核发现、回答宇宙元素起源,产生国际水准成 果,培养高端人才队伍 国际高水准的核材料考验手段,将孕育核能源、核医 学和射线应用新方向,使核科技应用达到新的高度

- 已经在国际上被作为未来不稳定核研究的两台代表性超级装置之一,受到重点关注
- □ 服务国际中心建设
- □ 探索物质科学极限
- 口产出诺奖成果
- 口人类科学宝库的中国方案
- □ 国家高科技和人才培养
- □ 促进加速器和高端核探测 技术发展
- □ 培养国家核科技领军人才

Accelerators for Nuclear Physics in the World									
	Beams	Asia	Europe	America	Comments				
Hot DCD	A+A		LHC (ALICE) FAIR (SIS300) NICA	RHIC	Nissing Asian? J-PARC-HI for dense matter?				
	hadron	J-PARC+Hdex HIRFL+HIAF	FAIR (SIS100)		Nissing American?				
Cold QCD	o -	Spring8 (LEPS) ELPH	NANI	JLAB-12GeV	1+many				
	collider	BES-III Bello-II	NICA	eRHIC eIC	1 in the world?				
	PF	R1BF+upgrade H1RFL+HIAF	GSI/FAIR	FRIB					
Many body	Both R1SP				Cood compatitions !!				
Problem (RI Bean)	I SOL	BR1F R1B-ANUR1B H1AF+CiADS?	SPIRAL2 SPES HIE-ISOLDE	ARIEL-II					
	Super 180L	Beijing- ISOL	EURISOL		FRIB upgrade for US?				
(High Resolution)	Pol proton	RCNP RC	KVI	Texas A&N	iThemba (South Africa)				

	0	1	2	3	4	5	6
项目建议书、可行性研究报告编 制等前期工作 首批投资计划下达							
初步设计、施工图设计							
土建工程							
设备加工采购							
安装调试							
联调出束,单项验收,提交军工 验收申请报告							

BISOL辐照中子源设计参数及比较

	能量 (MeV)	离子	流强 (mA)	功率 (MW)	有无中 子	靶 类型	束斑 面积 (cm²)	中子 通量 (n/cm².s)	辐照 体积 (cm³)
IFMIF	40	D+	2*125	10	有	液态 Li	~100	1*10 ¹⁵	300-500
LIPAc	9	D+	125	1.125	无				
SARAF	40	D+	5	0.2	有	固态 C		1*10 ¹⁴	
SPIRAL II	40	D+, p	5	0.2	有	固态 C		1*10 ¹⁴	~10
BISOL	40	D+, p	10	0.4	有	液态 Li	~4	5*10 ¹⁴	10~20

IFMIF: 未来聚变材料抗辐照性能考验的必备装置

BISOL: 达到IFMIF的中子通量,只是辐照体积较小

具有与IFMIF相同的中子能谱及通量密度,可提供几十个聚变材料样品的辐照考验,亦可提供上百个裂变材料样品的辐照实验,提供聚变能下一步发展的必须基础。

国际中心引领显著

能源需求创新突出

校企融合体系鲜明

技术储备工程可行

BISOL的发展历程

- 2012年10月: 国际咨询委员会会议, 对项目高度评价
- 2013年:列入国家重大科技基础设施中长期规划
- 2013年12月: 实现反应堆引出裂变碎片并质量分离原理验证
- 2014年8月: 第502次香山科学会议, 列入我国核物理大科学装置发展路线图
- 2016年5月6日:北京ISOL科学讨论会,其科学和应用需求和目标得到国内专家的广泛认可
- 2016年5月: 国家"十三五"重大科技基础设施发改委领域组评审通过, 排名第一
- 2016年6月: 国家"十三五"重大科技基础设施发改委总体组评审通过, 排名第十一
- 2016年9月: 国家"十三五"重大科技基础设施中咨公司规划评审通过
- 2016年12月:列入《国家重大科技基础设施建设"十三五"规划》
- 2017年1月: 强流中子源国际咨询会在北京召开
- 2017年3月:北京ISOL物理用户会议在北京大学召开
- 2017年9月:北京市阴和俊副市长视察原子能院,承诺对北京ISOL项目给予配套支持
- 2018年7月:中核集团通过自主投入项目,对北京ISOL项目给予3408万配套支持
- 2018年11月: 向发改委高技术司汇报
- 2019年8月: 向发改委领导汇报
- 2020年6月:完成建议书修改深化
- 2020年7月:北京市发改委出具支持函
- 2021年2月:参加发改委组织的大科学项目评审

2014年8月香山科学会议

□北京ISOL建成以后,能够在Ni 到 Sn的中子滴线区域产生高强度 的极丰中子核素,束流强度比当前国际上建成和在建的最先进的三 代放射性束装置强度高1-2个量级,这对研究远离稳定线原子核的奇 异结构和壳演化、核反应机制与超重元素合成、天体r过程的核合成 路径与走向等重大科学问题具有重要的意义。

口核科学平台对我国核能发展将会起到很好支撑作用,应大力发展 辐照模拟技术,积极开展相应的材料筛选与测评及辐照机理的研究, 研发先进的有自主产权的核燃料和抗辐照新材料。

部分专家名单

王乃彦	夏佳文	任中洲
沈文庆	徐瑚珊	陆景彬
肖国青	赵红卫	肖志刚
张焕乔	周小红	赵玉民
陈佳洱	杜祥琬	赵政国
	彭先觉	刘永
	李冠兴	邹冰松
	陈和生	
	张闯	
	安竹	

采用强流氘束打靶产生高通量的聚变能区中子,满足先进核 <u>能系统、特别是聚变堆材料的辐照测评与考验等急迫需求。</u>

北京大学离子源研究进展

CEA/Saclay ^[1]		Labs	PKU ^[2]							
H+	D+	He+	Ion type	H+	D+	He ⁺	O^+	Ar+	N+	
157	175	104	Current(mA)	130	83	65	70	70	84	
247	275	163	Density(mA/cm ²)	460	294	230	247	247	268	
0.5m x φ0.6m, >200kg			Source body	100mm x φ100mm, ~5kg						
0.6m x ¢0.5m, >200kg			Extraction System	100mm x φ 230mm, < 10kg						
3.3m×2.7m		HV platform Size	300mm ×230mm							
103h			Non-Sparking Term	296h						
IPHI / IFMIF / FAIR		Applications	DWA/H+	PKUNIF	C-	SFRFQ	Ic	on		
SPIRAL2, etc.			Therapy	TY	RFQ		Implai	ntation		

2) 北大H₂+/H₃+ECR 源

PKU^[3] *Vs* **World Record** H2+: 42mA *Vs* 20mA^[4] H3+: 20mA *Vs* 3mA^[5]

直流@40kV RF 100W@ 27mA H+ RF 10W@3mA H+ 1.7mA He+ <u>RF 10W@5kV 1.7mA</u> He+ 脉冲: 64mA@40kV 3) 北大超小型强流源

[1] Gobin R, Proc. EPAC2002
[2] Peng S.X. Chin. Phys. B 26(2) (2017): 025206.
[3] Y. Xu, et al., Rev. Sci. Instrum., 85, 02A943 (2014)
[4] R. Miracoli et al., Rev. Sci. Instrum. 83, 02A305 (2012).
[5] N. Joshi, et al., NIM A 606 310–313 (2009).
[6] Wen. J.M Chin. Phys. B, 27(5) (2018): 055204.

BISOL

先进核能系统中材料辐照损伤因素

BISOL

	Concept	Current/ energy (mA\McV)	Neutron yield (n s ⁻¹)	Damage rate (dpa/fpy)	Volume (1)		Comments
Accelerator-based							
Liquid target							
IFMIF [89, 91]	Li(d,n)	2×12540	1016	20	0.5	<i>n</i> spectrum with tails >14	Mature following the on-going results
				<5	6	MeV	of IFMIF/EVEDA and the invention
				<1	8		of HWR superconducting cavities last decade
IFMIF-DONES [106]	Li(d,n)	125\40	1015	10	0.5	n spectrum with tails	Mature following the on-going results
A-FNS [108]						>14 MeV	of IFMIF/EVEDA and the invention of HWR superconducting cavities last decade
BISOL	Li(d.n)	10/40	1014	1	0.5	n spectrum with tails >14 MeV	10 mA CW mode already achieved in C-ADS [84]
Solid target							
Sorgentina [117]	$t(d,n)\alpha$		2.3×10^{11}	2	0.125	Accelerator technologies not	
				1.5	0.5	ready	
HINEG-II [115]	$t(d,n)\alpha$	>500\0.4	1014	2	Not reported	Mature	
Indian Intense Neutron Source [116]	$l(d,n)\alpha$	30MD.3	3×10^{12}	1	Not reported	Mature	
FAFNIR [114]	C(d,n)	30\40		>5	0.150	Technological limitations on power absorbed in the target	Accelerators technologies can profit from the developments of IEMIE/ EVEDA
				>7	0.100		Data on cross-sections require
				20	0.025		refinement
Plasma-based							
Tokamak [135]	$t(d,n)\alpha$		Depends on the fusion power	Depends on the fusion power	Can be sufficient to house component and fidl scale testing specimens	Necessity of results from a fusion neutron source for its reliable design	Related technologies are mature but stable ignition of reactor not demonstrated
Gas dynamic trap [141]	$t(d,n)\alpha$		10 ¹⁶	20	>1	Neutral beam injection systems not ready	Necessity of results from a fusion neutron source for its reliable design, despite the lower radiation damage in facility than Tokamak concept

BISOL

美国伯克莱和前苏联杜布纳等实验室 1974年之前,利用中子俘获反应和 重离子诱发的熔合蒸发反应("热熔合")合成了93号到106号元素 的多种同位素。中子跑走太多,融合截面小。

- 德国GSI 1981-1996年:利用强流⁵⁴Cr, ⁵⁸Fe, ⁶²Ni, ⁶⁴Ni和⁷⁰Zn束流 轰击²⁰⁸Pb和²⁰⁹Bi靶("冷熔合"),先后合成了Z=107-112的6 种新元素的一系列同位素。生成截面随其原子序数的增加而呈指数 下降,合成Z=112的元素已经达到目前GSI技术条件的极限。到2010 年已经全部获得了IUPAC的元素命名。
- 日本的RIKEN 2004年:利用极强的⁷⁰Zn束流轰击²⁰⁹Bi靶合成了113号 元素。(2012年重复一例,2016年命名Nihonium)

俄罗斯Dubna近几年:选择了双幻核⁴⁸Ca轰击丰中子锕系靶,通过"温 熔合"来产生接近理论预言的球形超重稳定岛的长寿命核。基于单 个原子的α衰变关联测量技术,先后获得了若干Z=114-118的超重核素 衰变事件,部分得到验证,目前已经命名了114-Flerovium、116-Livermorium、115-Moscovium、117-Tennessine、118-Oganesson号元素。

北大强流离子加速器的30年发展

从极小到极大

核科学在科学体系中的位置

- · 位置: 物质科学前沿, 能源应用引领
- 方法:中子和高速带电粒子束流,产生奇异极端体系;进行材料考 验,改变材料性质
- ・ 广度: 微观到宇宙, 核子, 现实, 宇宙
- ・科学史: 30多项诺奖
- •科学特点:微观层次,强作用,多体,高能量密度
- ・辉煌:里程碑,売模型,B2FH;现在面临重写
- 需求:能量更宽,亮度更高,靠装置组合创新

核科学基础装置的定位

- 通过研究原子核的性质,掌握加速和探测方法,得到核物理的规律
- •利用核物理规律,开发新型核能源,保障核能技术的安全
- ·利用新探测手段,开发核技术应用领域
- •核科学发展到今天,核物理向纵深发展,技术应用向广度发展,正孕育着重大突破
- ・在不稳定核区的核物理,将导致新的幻数和超重核的发现,将回答元素合成的关键问题,将产生高水平的探测和加速器技术和一流的人才
- 新的核技术,将导致能源、医学和工业应用新方向,使核技术应用在我国达到应有的高度
- 核能在我国的发展,促进核基础研究需求;核基础研究成果,将为核燃料循环提供更多 解决方案,这种互动成为我国新时期的核科技创新动力

核物理与天体物理前沿

very diffuse

audiece.

no spin orbit

torotie nuela

harmonic

oscillator

around the

walley of

p - stability

稳定核束和丰中子核束产生Ni同位素的比较

Mass Mumber A

北京ISOL的概念设计

- 先进性。双源驱动,堆器耦合,可提供国际一流的束流强度和研究平台
 多用性。通过多束流、多能量和多平台,满足从基础应用的各种需求
- 可行性。双源驱动,运行因子高,技术成熟度适中,费效比高
- 互补性。与目前和将来的国内外大科学装置在束流、性能和地域互补

BISOL的具体建设、科学和应用目标

BISOL装置特色

- 在国内外的同类装置中具有不可替代性
 - 被国际同行列为与未来欧洲装置EURISIOL并列的超级装置
 - 在国际上唯一与研究性反应堆耦合,提供了很高的裂变束流强度和性价比
- 挑战性与可靠性兼顾
 - 反应堆驱动有望得到高产额放射性核束
 - 氘核加速器驱动提供了国际水平的聚变中子通量
- 多模式运行,基础研究与需求应用兼顾
 - 更强的丰中子放射性核束满足原子核稳定性极限新物理研究需求
 - 核能材料强流中子辐照测评满足先进核能发展需求
 - 年提供束流时间约8000小时,可提供百余个基础和应用实验,参加实验的骨干人员可达千人以
 上,将成为国内外开放的大科学平台
- 与国内外大科学装置在基础科学和应用目标、束流性能、地域等方面互补

北京ISOL 拥有较长久的科学寿命, 在未来20 年中将 是国际上最具竞争力的新一代放射性束流装置。

实施条件和技术基础

已有基础

- 中国原子能科学研究院和北京大学在核物理、加速器物理与 技术、核技术应用以及相应的科学装置建设方面拥有高水平 的研究和工程技术队伍。
- 原子能院研究堆运行中心,具有研究型反应堆50年的运行经验,可以保证CARR堆的稳定运行。
- 目前原子能院完成建设ISOL型串列升级工程,其中包括超导 直线加速段,正在建设重离子超导后加速项目,这为BISOL 的直线加速器建造提供了人才和技术积累。
- 北京大学团队在强流离子源,强流氘加速器等方面有长期的 积累,完成了多项低能加速器装置建设。
- 中科院近物所、高能所等兄弟单位和国际上相关装置的研究 团队可以为BISOL的建设提供支持和合作。

丰中子实验终端关键技术研究进展

- 开展BISOL束流强度的预评估;
- •确定了无窗气体剥离靶的设计方 案;
- 完成了直接入射型束测样机的组装;
- •准备共线激光实验室及光学平台;

无窗气体剥离靶样机设计方案

直接入射型束测样机

共线激光光学平台及洁净室

项目的国家重大需求意义

面向重大需求, 解决部分卡脖子问题。

- 核数据
- 不稳定核数据,先进裂变能源亟需,核废料处置亟需。美国2015年计划有 详细分析。
- 核材料,特别聚变材料的研究和考验。
- 国家能源安全
 - 三步走计划
 - 聚变材料关键科学问题
 - 关键材料的国际最好的测试平台
- 解决国家聚变工程的科学问题
- 国家装置安全
 - 重要核数据测量
 - 重要核材料考验
 - 提供国家装置重要数据

聚焦不同科学问题(核素区域),采用独特的技术路线。

- 国际
 - 基础装置中,亮度最高,性价比最好,未来两大超级装置
 - 应用装置中, 辐照深度最高, 达到未来国际装置水平
- 国内
 - 与HIAF是互补关系, 前者全质量区不稳定核;
 - 我们中等核区靠近稳定极限
 - 与反应堆辐照平台是互补关系, 前者是热中子,
 - 我们是超快中子

- · 兰州CSR工程2008年建成,可达比较远离核,但强度受到回旋注入的限制
- ·北京BRIF工程2015建成,ISOL装置,到达远离受到反应机制和分离时间限制
- ・中科院多用途装置HIAF,预计2024年完成,性能与 FRIB相近,但强调多用途
- ・中科院ADS装置,预计2025年完成,在高能强流质子方面具有领先地位(250MeV、流强10mA)
- · 总体上说,与应用相关的质子和中子科学装置国内布局 比较齐全,而国内外极端丰中子束流需求在未来仍然非 常迫切,成为我们大科学工程的很好切入点

我国的核基 础科学 大科学 装置

- 横轴左边的稳 定核到右边的 滴线
- 纵轴从下边的 新核素鉴别到 上边的直接反 应测量。
- 45度线左边的 第一代装置到 右边的第三代 装置。
- 北京 ISOL 处 于新一代,为 从跟踪到赶超 提供了机遇

国际未来装置:我们优势

地点	驱动加速器	后加速器	装置类型	情况说明
德国, FIAR	重离子同步1.5 A GeV		PF	建设中,经费问 题, 2019
欧洲, EURISOL	质子, 1 GeV , 1-5MW	超导直线 100 A MeV	ISOL+PF	研究中,地点和 经费未定
韩国, RAON	70 MeV 质子 70 kW 重离子直线,200 A MeV	80 A MeV	ISOL+PF	方案不断修改, 实验技术力量不 强, 2021
中国, HIAF	重离子同步4.4 A GeV		PF	发改委批准,项 目启动建设, 2021
美国, FRIB	重离子直线, 148 A MeV,400 kW	计划中 15 A MeV	PF	进展顺利,2020
中国,北京 ISOL	反应堆, 40 MeV d	超导直线 150 A	ISOL+PF	2025

我国核物理研究大科学装置发展的路线图: 2014年8月: 第502次香山科学会议

更多的奇异核

物理目标

- drip line nuclear physics 滴线区核物理
- - New magic number 新幻数
- - Super heavy elements 超重元素
- – Astrophysical r-process 天体物理快速中子俘获过程
- - Multi-neutron correlation 多中子关联
- New decay modes: βxn, GS 新衰变模式
- - Neutrino beam 中微子束流
- - Data of n-rich nuclei 丰中子核数据
- - Application of n-rich beams 丰中子束流应用
RIB with ⁸¹Ga beams

RIB with 142Xe beams

How two steps work

BisoL

Two step (ISOL+PF) approach

RI factory: ⁷⁸Ni by n-rich fission beams

Combined approach

- ISOL+PF: neutron beam from reactor or accelerator, with large ²³⁵U fission cross section (585 b), easy ISOL selection of fission fragments, post acceleration, then fragmentation PF again: EURISOL, Beijing ISOL
- Pro and con
 - Pro: 5-8 more neutrons than stable beam, with cross section increase by 4-6 order
 - Con: re-accelerated beam intensity weaker by 2-3 order: RIBF ²³⁸U 10¹² pps; Beijing ISOL ¹³²Sn 10⁹⁻¹⁰ pps
 - The net gain: 1-2 order or more intensity of n-rich beams!

Beijing ISOL detector map

Det	MAS	LAS	BGA	BTP	BDA	BSD	CLIB	BGD
Detector			ucere quetos					
Functio n	multiple application spectromet er	Large solid-angle spec	Beijing gamma array	Beijing Trap	Beijing decay array	Beijing solenoid	collinear laser-ion beam spectrosco py	Beijing general purpose detector
Measured quantity	Reaction, astrophysi cs	Reaction	Structure	Mass	Half life, branching ratio	Reaction, astrophysi cs	nuclear moments	Identificati on, reaction
Physics case	Shell evolution Reaction rate	SHE mechanism				Shell evolution Reaction rate		Shell evolution Drip line
Intensity, pps	10 ³ -10 ⁵	10²-10 ⁴	10²-10 ⁴	10 -1 -10 ²	10 -2 -10 ²	10²-10 ⁴	10 ² -10 ⁴	10 -4-10 ³

Beijing ISOL detector map

Det	MAS	LAS	BGA	BTP	BDA	BSD	CLIB	BGD
Fig								
IS keV				V	V			
10 A MeV ISOL	V	V	V			V	V	
100 A MeV PF			V		V			V
PF-GS				V				

IS: 30-300 KeV; ISOL: 10-70 MeV/u; PF: 100-150 MeV/u; PF-GS: PF with gas stopper, 30-300 KeV

ISOL beam intensity

2	²³⁵ U/g	σ /b	n-flux, /cm²/s	f /s
ļ	5	585	3×10 ¹⁴	2×10 ¹⁵

nuclei	Fis. yield	rate	Target +isol eff. (ref. PIAFE)	CB eff	Linac eff.	intensity
⁹¹ Kr	3.2×10-2	6.4×10 ¹³	13.0%	10%	50%	4×10 ¹¹
¹⁴² Xe	4.3×10 ⁻³	8.8×10 ¹²	2.0%	10%	50%	9×10 ⁹
¹³² Sn	5.7×10 ⁻³	1.2×10 ¹³	8.0%	10%	80%	7×10 ¹⁰
⁸¹ Ga	7.6×10 ⁻⁵	2×10 ¹¹	8.0%	10%	95%	1×10 ⁹

Latest calculation by J. Su

RIB produced by n driver

37/50

RIB produced by D/p LINAC

Can also reach r-process and detect drip line !

37/50

- High temperature and dosage target/ion source
 - Modular design, robot system
- Effective extrication of fission fragment
 - Using in-pile target/ion source
- High beam transmission of post acceleration stage
 - Selecting LINAC as post accelerator with multi charge capability

BRIF ISOL: prepared for **BISOL**

ISOL and fission facilities

- CARIBU in ANL, under construction, ²⁵²Cf fission then ISOL, 10⁹ f/s, ATLAS acceleration
- ORNL, separation and acceleration of ¹³²Sn to 10⁵ pps, now quit user facility
- Studsvik reactor: 1 g ²³⁵U and 3X10¹¹ /cm²/s neutron
- New record of FEBIAD in ANL:91Kr, extract efficiency to 50%!
- All showing the feasibility of ISOL post acceleration of fission fragment beams like ¹³²Sn

