Search for new physics of Charged Lepton Flavor Violation on the COMET Experiment

SYSU-PKU Collider Physics forum For Young Scientists

XING Tianyu Institute of High Energy Physics, CAS

The COMET Experiment

- Physics Motivation
- Design of the COMET
- Development of software

Outline

- Search for Majoron
- Summary

COherent Muon Electron Transition

- Search for μ -e conversion in Japan J-PARC hadron hall
 - Using 8 GeV, 56 kW proton beam to generate muon beam
- Experiment Target:
 - $B(\mu^{-} + AI \rightarrow e^{-} + AI) = \frac{2.6 \times 10^{-17} \text{ (S.E.S)}}{2.6 \times 10^{-17} \text{ (S.E.S)}}$
 - This is **10000 times improvement!**
- Current world limit:
 - $B(\mu^- + Au \rightarrow e^- + Au) < 7 \times 10^{-13}$
 - By SINDRUM II experiment (2006)
- Likely to get 100000 times improvement!
 - Still being optimized

The COMET collaboration

~200 members, 44 institutes from 17 countries

Still growing!

IET

Physics Motivation

Charged Lepton Flavor Violation

The establishment of the Standard Model and the observation of Neutrino Oscillation worked-out very much in the particle physics. However there are still mysteries.

Process of CLFV

• Highly prohibited (O($<10^{-54}$)) in the SM

$$\frac{\Gamma(\mu \to e\gamma)}{\Gamma(\mu \to e\nu\nu)} \propto \left| \sum_{i} \frac{m_{i}^{2}}{m_{W}^{2}} U_{\mu i}^{*} U_{ei} \right|^{2} \sim O(10^{-54})$$

small mass ratio of neutrino to weak boson

- No/less background from SM
- Very rare decays and **not found yet!**
- Clean field to search for new physics! Current upper limits on \mathcal{B}_{i}

Charged Lepton Flavor Violation

Mode	Upper limit	Experiment (Year)
$\mu^+ o e^+ \gamma$	4.2×10^{-13}	MEG (2016)
$\mu^+ ightarrow e^+ e^+ e^-$	$1.0 imes 10^{-12}$	SINDRUM (1988)
$\mu^{-}Au \rightarrow e^{-}Au$	7×10^{-13}	SINDRUM II (2006)
$\mu^+ \rightarrow e^+ X, X \rightarrow \text{inv.}$	<i>O</i> (10 ⁻⁵)	TWIST (2015)
$\mu^+ \rightarrow e^+ \gamma X, X \rightarrow \text{inv.}$	<i>O</i> (10 ⁻⁹)	Crystal Box (1988)
$\mu^+ ightarrow e^+ X$, $X ightarrow e^+ e^-$	$O(10^{-12})$	SINDRUM (1986)
$\mu^+ o e^+ X$, $X o \gamma \gamma$	0 (10 ⁻¹⁰)	MEG (2012)

μ - e conversion

- Atomic capture of μ^-
 - Generate "muonic atom" by muon stopping at the target
- Measure emitted electron momentum from muonic atom
 - Decay in obit (DIO) is Michael edge up to 105 MeV
 - μ-e conversion signal is mono-energetic ~105 MeV peak
- Spectroscopic search for μ -e conversion

OMET e

9/3/

• $E_{\mu e}(AI) \sim m_{\mu} - B_{\mu} = 105 MeV$

- B_{μ} : binding energy of the 1s muonic atom

Search for Muon to Electron Conversion

Design of the COMET

Background rejection (1)

• Intrinsic physics background

- ➢ Mostly from muon decay in orbit (DIO)
 - Calculated by Czarnecki with radiative correction. Branching ratio drops very quickly near end point
 - Momentum resolution required to be better than 200 keV/c

1s state in a muonic atom

Background rejection (2)

- Beam related background
- ► Energetic particles in beam with E>100MeV -
- Long muon beam line
- Can be suppressed by pulse beam and a delayed measurement window (~700 ns)
- Some due to leaked proton. Proton extinction factor required to be $< 10^{-10}$

13/37

- Radiative pion capture, $\pi^{-}(A,Z) \rightarrow (A,Z-1) \gamma, \gamma \rightarrow e^{+} e^{-}$
- Muon decay in flight, $p_{\mu} > 75$ MeV/c
- Anti-proton induced, etc.

Material of muon stopping target

- Heavier nucleus has large overlap with muon wave function
- Lighter nucleus has longer life time of muon in muonic atoms
- Aluminum stopping target will be used in COMET τ_µ in Al ~ 0.9µsec

Background rejection (3)

OMET

• Cosmic ray background

> Cosmic rays may create e⁻ in signal region that come into a detector and make trigger.

- To avoid these CR induced BG, target and detector region have to be **covered by veto counters**.
- Required performance: CRV inefficiency $\sim 10^{-4}$
- CR background ∝ data taking time (shorter running time with higher beam intensity is better)

Staged plan of COMET

COMET Phase-I, 150 days data taking Proton beam: 8 GeV, 0.4 mA, 3.2 kW

• Search for $\mu - e$ conversino with cylindrical detector (CyDet) with: S.E.S. = 3×10^{-15}

(2 orders of magnitude improvement).

- Directly measure the muon beam with prototypes of Phase-II detector.
 - Very useful to guide Phase-II

Physics Sensitivity

COMET Phase-II, One year data taking, 8 GeV, 7 mA, 56 kW proton beam

- Search for μe conversion with S.E.S. = 2.6×10^{-17} (4 orders of magnitude improvement)
- Further optimization on the way
 - Likely to improve sensitivity by factor of $10 (\mathcal{O}(10^{-18}))$
 - with the same beam power and beam time
 - More muons with in-depth optimization of target
 - Higher acceptance after redesigning of collimator

Event selection	Value
Online event selection efficiency	0.9
DAQ efficiency	0.9
Track finding efficiency	0.99
Geometrical acceptance + Track quality cuts	0.18
Momentum window ($\varepsilon_{\rm mom}$)	0.93
Timing window (ε_{time})	0.3
Total	0.041

Parameter	Phase-I	Phase-II	
Bending	90º (beam)+0º(detector)	180º (beam)+180º(detector)	
Beam power	3.2 kW (8 GeV)	56 kW (8 GeV)	
Running time	9.5•10 ⁶ sec	2 •107 sec	
POT	3.2•10 ¹⁹	8.5•10 ²⁰	
Stopped muons on target	1.5•10 ¹⁶	2•10 ¹⁸	
S.E.S.	3.1•10 ⁻¹⁵	2.6•10 ⁻¹⁷	

Cylindrical Detector (CyDet)

Specially designed for Phase-I. Consists of:

- Cylindrical trigger hodoscope (CTH):
 - Two layers: plastic scintillator for trigger time and Cerenkov counter for PID.
 - Finemesh PMT readout
 - 4-fold coincidence trigger
- Cylindrical drift chamber (CDC):
 - 20 stereo layers: z information with few layers' hits
 - Helium based gas: minimize multiple scattering.
 - Large inner bore: to avoid beam flash and DIO electrons.
 - Momentum resolution: 200 keV/c (for p=105 MeV/c)
- Stopping target
 - Aluminum target with 17 disks
 - 100-mm radius, 0.2-mm thickness, 50-mm spacing.

Monte Carlo study of COMET Phase-I

- The optimization of COMET Phase I is finished. Detailed performance is estimated with Monte Carlo studies. TDR was published on arXiv (arXiv:1812.09018 [physics.ins-det])
- Sensitivity:
 - Total acceptance of signal is 0.041.
 - Can reach 3×10^{-15} SES in 150 days.

$$B(\mu^- + \text{Al} \rightarrow e^- + \text{Al}) = \frac{1}{N_{\mu} \cdot f_{\text{cap}} \cdot f_{\text{gnd}} \cdot A_{\mu-e}}$$

$$\begin{split} B(\mu^- + Al \to e^- + Al) &= 3 \times 10^{-15} \text{ (S.E.S)} \\ B(\mu^- + Al \to e^- + Al) < 7 \times 10^{-15} \text{ (90\% C.L.)} \end{split}$$

- Background:
 - With 99.99% CRV total expected BG is 0.032
- Trigger rate:
 - Average trigger rate ~10kHz (after trigger with drift chamber hits)

Type	Background	Estimated events
Physics	Muon decay in orbit	0.01
·	Radiative muon capture	0.0019
	Neutron emission after muon capture	< 0.001
	Charged particle emission after muon capture	< 0.001
Prompt Beam	* Beam electrons	
-	* Muon decay in flight	
	* Pion decay in flight	
	* Other beam particles	
	All (*) Combined	≤ 0.0038
	Radiative pion capture	0.0028
	Neutrons	$\sim 10^{-9}$
Delayed Beam	Beam electrons	~ 0
·	Muon decay in flight	~ 0
	Pion decay in flight	~ 0
	Radiative pion capture	~ 0
	Anti-proton induced backgrounds	0.0012
Others	Cosmic rays [†]	< 0.01
Total		0.032

Other Physics Topics on COMET

OMET e

- $\mu^- N_z \rightarrow e^+ N_{Z-2}$: Lepton number violation (LNV)
 - Current limits: $\mu^- Ti \rightarrow e^+ Ca(gs) \le 1.7 \times 10^{-12}$ $\mu^- Ti \rightarrow e^+ Ca(ex) \le 3.6 \times 10^{-12}$
 - Can improve with a proper target
- $\mu^- e^- \rightarrow e^- e^-$: μ^- and e^- overlap proportional to Z^3

Phys. Lett. B422 (1998) Phys. Lett. B764 (2017) Phys. Rev. D96 (2017)

Phys. Rev. Lett. 105 (2010) Phys. Rev. D93 (2016) 076006 Phys. Rev. D97 (2018) 015017

- $\mu^- \rightarrow e^- X$: X can be a new light boson, ALP, Majoron, etc.
 - feasibility being studied in COMET

Phys. Rev. D79. 055023 (2009) Phys. Rev. D84. 113010 (2011)

Development of Software

\$ \$^\$

Reconstruction algorithm for CyDet

- Detector response algorithm
 - Digitization and offline trigger
- Track finding algorithm
 - Provide seed tracks
- Track fitting algorithm
 - Fit track precisely using Kalman fitter
- Challenge
 - No seed from other sub-detector
 - All stereo layers
 - Overlapping between different turns
- One of the most difficult situations of drift chamber

Track finding algorithm

- RANdom SAmple Consensus (RANSAC)
 - Subsets of data could be described by same model
 - Used to distinguish different turns
- Helix fitting with minimum hits
 - Separated into circle fitting and ϕ -z linear fitting
 - Iteration could improve the resolution

a line has to be fitted.

A data set with many outliers for which Fitted line with RANSAC; outliers have no influence on the result.

Track fitting algorithm

- Kalman fitter is widely used in reconstruction algorithm
- **Based on GenFit** (https://github.com/GenFit/GenFit)
 - An experiment-independent **generic track fitting** framework
 - Official track fitting for Bellell, also used by PANDA, CEPC, BESIII, GEM-TPC etc.

(a) Measurements with covariance (yellow), planar detectors and drift isochrones (cyan), respectively, and reference track (blue).

25/37

Development for reconstruction

- New design of event model suitable for reconstruction
- Develop a simple digitization algorithm
- Develop a track finding algorithm based on RANSAC
- Optimize track fitting algorithm based on Genfit
- Develop a full reconstruction algorithm for COMET Phase-I

μ

Search for Majoron

Introduction of Majoron

- Dirac mass term of neutrino
 - Should be in same level with $m_e, m_\mu, m_ au$
- Seesaw models to explain the tiny mass of neutrino
 - Neutrnio mass: M_R , M_D^2/M_R
- Majorana mass term of neutrino
 - Nuetrinoless double beta decay
 - Leads to spontaneous break of lepton number
 - Majoron(J): a massive or massless Goldstone particle
- Experiments to search for Majoron
 - Invisible decay width of Z boson but excluded by LEP
 - μ->e+J
 - Related to $\mu \rightarrow e + X$, while X is light (pseudo-)scalars like ALP

28/37

Search for $\mu^- \rightarrow e^- J$

$\mu^- \rightarrow e^- X$ in a muonic atom cf. X. G. i Tormo *et al.*, PRD **84**, 113010 (2011).

Advantage over free muon decay

1. less background

Disadvantage

---: $\mu^+ \rightarrow e^+ X$ (free) ---: $\mu^+ \rightarrow e^+ \nu_e \overline{\nu}_{\mu}$ (free) : $\mu^- \rightarrow e^- X$ (μ -gold) : $\mu^- \rightarrow e^- \overline{\nu}_e \nu_{\mu}$ (μ -gold)

- different peak positions of signal & BG
- 2. also sensitive to contact reactions with nucleus
- 3. more information : "spectrum" & "dependence on nucleus"

Reference: Report "New promising CLFV modes in muonic atoms" by Yuichi Uesaka(Saitama U.)

30

40

50▲ 60

 $m_{\mu}/2$

70

80

 E_e [MeV]

20

10

& H. Natori, Talk at 73th JPS meeting (2018).

electron spectrum

- ✓ non-monochromatic signal
- ✓ shorter life time of muonic atom

- TWIST on 2015
- Mu3e in the future
- $\mu^- \rightarrow e^- J$ in muonic atom
 - No experiment
 - COMET could be the first one

Signal region

- The signal significance is bigger at high energy region
 - DIO is considered as major background

FIG. 2 (color online). Electron spectrum for Majoron emission in orbit for Al (solid line). The second panel is a zoom for $E_e > 100$ MeV. The dashed line in the second panel is the electron spectrum for DIO in Al, multiplied by a constant (C = 415) to make it coincide with the MEIO rate at $E_e = 100$ MeV.

Optimization of signal region

- OMET e
- Considering the acceptance of detector, significance factor is given as:

Likelihood analysis method

- The case we already have data $f(E)_{measured}$
 - $f(E)_{excepted} = f(E)_{DIO} + r_1 * f(E)_{MEIO}$
 - Branch ratio of μ -> e + J could be given at 90% C.L.
- The case we don't have data *f*(*E*)_{measured}
 - $f(E)_{measured} = f(E)_{DIO} + r_2 * f(E)_{MEIO}$
 - Draw all the limits with different r_2 as a confidence belt

Prediction of COMET Phase-I

- Prepare input for likelihood analysis
 - Acceptance and energy loss from full simulation
 - Optimization with different uniform magnetic fields
- The prediction is given as 2.3×10^{-5} considering the event ratio limit

Magnetic Field	1T	$0.95\mathrm{T}$	$0.9\mathrm{T}$
Upper Limit	2.3×10^{-5}	1.4×10^{-5}	6.9×10^{-6}
Event rate of DIO	16.7 kHz	75.3 kHz	394.6 kHz

TABLE II. Estimated upper limits after reducing strength of magnetic field of COMET Phase-I

Prediction of COMET Phase-II

Fast Simulation:

- The tracks of electrons are considered as standard helices
- Material effects and uncertainty of magnetic field are not considered
- A flat blocker and a circular blocker is considered

μ

Prediction of COMET Phase-II

- Prepare input for likelihood analysis
 - Acceptance distribution from fast simulation
 - Optimization with different design of blocker
- The prediction is given as $O(10^{-8})$ considering the event ratio limit

Summary

<u>ደ</u> ደ[/]ደ

- OMET e
- COMET is an experiment at J-PARC searching for muon to electron process.
 - Aims at S.E.S = 2.6×10^{-17} (4 orders of magnitude improvement) with 1 year beam time.
 - The study to reach S.E.S $\sim 10^{-18}$ is in progress
- COMET will be carried out in two phases and Phase-I is under construction.
 - Aims at S.E.S = 3×10^{-15} (2 orders of magnitude improvement) with 150 days beam time.
- Develop reconstruction algorithm for the drift chamber detector of COMET Phase-I
 - Design and develop new event model for the software framework
 - Develop tracking algorithm with good resolution
- A R&D of searching for Majoron on COMET has been done.
 - The prediction of sensitivity on COMET Phase-II is given as $O(10^{-8})$
 - 1000 times improvement compared with current best result.
 - The paper has been accepted by Chinese Physics C (CPC) and will be published as cover article.
 - DOI: 10.1088/1674-1137/ac9897

Production target and the capture magnet

- 8 GeV 56 kW proton beam
- Thick target with 1~2 hadron interaction length
- Powerful capture magnet: 5 T
 - Large inner bore to fit in the shielding
 - Adiabatic decreasing field: focusing and mirroring
- Expected muon yield: 10¹¹ muon/sec! (10⁸ @ PSI)

Transportation solenoid

Drift vertically, proportional to momentum.

High momentum track Low momentum track

Beam collimator

Vertical field as "correction"

- Use C shape curved solenoid
 - Beam gradually disperses
 - Charge & momentum
 - Dipole field to pull back muon beam

Vertical Field

- Can be used to tune the beam
- Collimator placed in the end
 - Utilize the dispersion in 180 degrees

Stopping target and detector system

 $\bullet \bullet \bullet$