High-precision Drell-Yan Production at N³LO in QCD

Tong-Zhi Yang

with Xuan Chen, Thomas Gehrmann, Nigel Glover, Alexander Huss and Hua Xing Zhu 2107.09085 [Phys.Rev.Lett. 128 (2022)] and 2205.11426

December 21, 2022 SPeCial4Young: SYSU-PKU Collider Physics forum For Young Scientists

European Research Council Established by the European Commission

Tong-Zhi Yang (University of Zurich)

DY production

Three 'dark clouds' in particle physics since 2021

• 3.1 σ deviation with SM for lepton universality in beauty-quark decays

Test of	Test of lepton universality in beauty-quark decays						#1	
LHCb Coll	LHCb Collaboration • Roel Aaij (NIKHEF, Amsterdam) et al. (Mar 22, 2021)							
Published in: Nature Phys. 18 (2022) 3, 277-282 • e-Print: 2103.11769 [hep-ex]								
🖹 pdf	∂ links	∂ D0I	[∃ cite	datasets	🕄 claim		a reference search	

• 4.2 σ deviation with SM for g-2 of μ^+ particle

Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm #					
Muon g-2 Collaboration • B. Abi (Oxford U.) et al. (Apr 7, 2021)					
Published in: Phys.Rev.Lett. 126 (2021) 14, 141801 • e-Print: 2104.03281 [hep-ex]					
🖹 pdf 🔗 links 🖉 DOI 🖃 cite 📑 claim	R reference search	➔ 1,112 citations			

• 7 σ deviation with SM for M_W measurement with the CDF II detector

Precision measurements and predictions become a key to reveal new physics

Precision measurements and predictions for derived quantities in SM

- With inputs of fundamental parameters, SM can directly predict derived quantities.
- Precision measurements and predictions don't depend on each other

Example, R_K measurments in beauty-quark decays

Nature Phys. 18 (2022) 3, 277-282

Precision predictions for fundamental parameters in SM

- SM can not directly predict fundamental parameters like M_Z or M_W .
- Predictions in SM for them are based on electroweak fits.
- For example, to predict M_W from electroweak fit, it relys on the relation

$$M_W^2\left(1-rac{M_W^2}{M_Z^2}
ight)=rac{\pilpha}{\sqrt{2}G_\mu}\left(1+\Delta r(M_t,\ M_H,\cdots)
ight)$$

as well as other precisely-measured parameters.

• Δr encodes higher order corrections from SM

Precision measurements of fundamental parameters

For processes without neutrino final states, like M_Z measurement

- e^+e^- colliders
 - ▶ Control e^+e^- beam energy to produce nearly on-shell Z bosons
- Hadron colliders
 - Reconstruct M_Z from the final state dilepton system

For processes with neutrino final states, like M_W measurement

- e^+e^- colliders
 - ► Control e⁺e⁻ beam energy to produce a pair of nearly on-shell W⁺W⁻ bosons
- Hadron colliders
 - Template fits to some observable distributions (the only method)

Precision measurement of M_W in hadron colliders

Template fits procedures:

• Measure relavant distributions (data), for example

$$p_T^{l/
u}, m_T^W = \sqrt{2 p_T^l p_T^
u (1 - \cos \Delta \phi)}$$

- Generate several theoretical templates with different M_W (theory)
- The measured M_W corresponds to the template that best fits to the data

Measured M_W are affected by experimental and theoretical uncertainties

Different measurments use different templates

- ATLAS: Powheg + Pythia8 + DYNNLO
- LHCb: Powheg + Pythia8 + DYTurbo
- CDFII: ResBos (NNLL+NLO) + Photos

ATLAS, LHCb, CMS all have on-going measurement of W mass

More in the template used by CDFII

Default template: ResBos [Balazs, Landry, Brock, Nadolsky, Yuan, 97, 2003]

• ResBos uses the CSS resummation formula:

$$\frac{d\sigma}{dQ^2 d^2 \vec{p_T} dy} = \sigma_0 \int \frac{d^2 b}{(2\pi)^2} e^{i \vec{p}_T \cdot \vec{b}} e^{-\mathcal{S}(b)} C \otimes f_1 C \otimes f_2 + Y$$

• Non-perturbative contributions from PDFs and BLNY form $S_{\rm NP}$

$$S(b) = S_{\sf NP}S_{\sf Pert}, S_{\sf NP} = \Big[-g_1 - g_2 \ln \big(rac{Q}{2Q_0} \big) - g_1 g_3 \ln(100x_1x_2) \Big] b^2$$

CDFII template generation

- Use BLNY fitted values[03] for g_1, g_3
- Modify g_2 by fitting to the p_T^Z data
- α_s tuning to Z data
- ullet Use the obtained $g_1\cdots g_3, lpha_s$ to generate templates for $p_T^{l/
 u}$ and m_T^W

ResBos vs ResBos2

ResBos2 (N3LL+NNLO) [Isaacson Ph.D. thesis, 17] is more precise than ResBos

- Mimic the procedure by CDF, perform a pseudoexperiment
- pseudodata: N3LL+NNLO

We determine that the datadriven techniques used by CDF capture most of the higher order corrections, and using higher order corrections would result in a decrease in the value reported by CDF by at most 10 MeV.[Isaacson, Yao, Yuan, 22]

Theoretical predictions can be further improved by including N3LL' resummation, NNLO mixed QCD-EW and N3LO QCD corrections

QCD factorization

Figure by A. Huss

 $\sigma_{AB} = \sum_{ab} \int_0^1 dx_a \int_0^1 dx_b f_{a|A}(x_a) f_{b|B}(x_b) \hat{\sigma}_{ab}(x_a, x_b) \left(1 + \mathcal{O}(\Lambda_{\text{QCD}}/Q)\right)$ $\hat{\sigma}_{ab} = \hat{\sigma}_{ab}^{(0)} + \alpha_S/(4\pi) \hat{\sigma}_{ab}^{(1)} + (\alpha_S/(4\pi))^2 \hat{\sigma}_{ab}^{(2)} + (\alpha_S/(4\pi))^3 \hat{\sigma}_{ab}^{(3)} + \mathcal{O}(\alpha_S^4)$

• f(x) is parton distribution function, fit from experimental data, few % • $\hat{\sigma}_{ab}$ is partonic cross section, perturbatively calculable, aims at few %

State of the art precision for DY in fixed order calculations

In pure QCD

- NNLO cross section[R. Hamberg et al., 91; R.V. Harlander and W. B. Kilgore, 02]
- Analytic NNLO rapidity distribution[C. Anastasiou, L. J. Dixon, K. Melnikov, and F. Petriello, 03, 04]
- NNLO fully differential distributions implemented in DYNNLO, FEWZ and MATRIX[K. Melnikov and F. Petriello, 06,06; S. Catani, L. Cieri, G. Ferrera, D. Florian and M. Grazzini, 09, 10; R. Gavin, Y.Li, F. Petriello, and S. Quackenbush, 11]
- Analytic N³LO cross section for $\gamma^* + Z$ production and also W production [C. Duhr, F. Dulat, and B. Mistlberger, 20, 20, 21]
- This talk: N³LO precision predictions for γ^* and W productions
- N³LO fiducial predictions for Drell-Yan at the LHC [X. Chen, , T. Gehrmann, E.W.N. Glover, A. Huss, P. Monni, E. Re, L. Rottoli, P. Torrielli, 22]

In mixed QCD-EW

• NNLO mixed QCD-EW $\alpha_{S} \alpha_{EW}$ [S. Dittmaier, A. Huss and C. Schwinn, 16;

A. Behring, F. Buccioni, F. Caola, M. Delto, M. Jaquier, K. Melnikov, and R. Rontsch, 20,21; L. Buonocore, M. Grazzini, S. Kallweit, C. Savoini, and F. Tramontano, 21; R. Bonciani, L. Buonocore, M. Grazzini, S. Kallweit, N. Rana,

F. Tramontano, and A. Vicini, 21; F. Buccioni et al, 22]

Q_T subtraction at N³LO

• A direct generalization of Q_T subtraction at NNLO [S. Catani and M. Grazzini, 07]

$$\frac{d^2 \sigma_V^{(3)}}{dQ^2 dy} = \int_0^{q_T^{\text{cut}}} dq_T \frac{d^3 \sigma_V^{(3)}}{dq_T dQ^2 dy} + \int_{q_T^{\text{cut}}} dq_T \frac{d^3 \sigma_{V+J}^{(2)}}{dq_T dQ^2 dy}$$

• Since $q_T^{\text{cut}} > 0$, for the above q_T^{cut} part

$$V_{\mathsf{NLO}} \to (V+J)_{\mathsf{LO}} \cdots, V_{\mathsf{N}^3\mathsf{LO}} \to (V+J)_{\mathsf{NNLO}}$$

- The above q_T^{cut} part reduces to an NNLO calculation of V + J[A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, A. Huss, and T. A. Morgan, 16; R. Boughezal, J. M. Campbell, R. K. Ellis, C. Focke, W. T. Giele, X. Liu, and F. Petriello, 16, 16]
- We use the event generator NNLOJET to compute the above q_T^{cut} part
- The below q_T^{cut} part can be approximated using the LP TMD factorization

Transverse-momentum-dependent (TMD) factorization

• TMD factorization at leading power (LP) in SCET

$$\frac{d^{4}\sigma}{dQ^{2}d^{2}\boldsymbol{q}_{T}dy} = \int \frac{d^{2}\boldsymbol{b}}{(2\pi)^{2}} e^{-i\boldsymbol{q}_{T}\cdot\boldsymbol{b}} \sum_{q} \frac{\sigma_{\text{LO}}^{V}}{E_{\text{CM}}^{2}} \left[\sum_{k} \int_{x_{1}}^{1} \frac{dz_{1}}{z_{1}} \mathcal{I}_{qk}\left(z_{1},\boldsymbol{b}\right) f_{k/h_{1}}(x_{1}/z_{1}) \right] \\ \times \sum_{j} \int_{x_{2}}^{1} \frac{dz_{2}}{x_{2}} \mathcal{I}_{\bar{q}_{1}j}\left(z_{2},\boldsymbol{b}\right) f_{j/h_{2}}(x_{2}/z_{2}) \mathcal{S}\left(\boldsymbol{b}\right) + (\boldsymbol{q}\leftrightarrow\bar{q}_{1}) \right] H_{q\bar{q}_{1}}\left(1 + \mathcal{O}(q_{T}^{2}/Q^{2})\right) \\ x_{1} = \sqrt{\tau}e^{y}, x_{2} = \sqrt{\tau}e^{-y}, \tau = (q_{T}^{2} + Q^{2})/E_{\text{CM}}^{2}$$

$$\mathcal{M}_1$$
 \mathcal{V} \mathcal{V} \mathcal{M}_2 \mathcal{V} \mathcal{V} \mathcal{V} \mathcal{M}_1 \mathcal{V} \mathcal{V}

- All ingredients are known to three loops.
- Hard function H_{qq}.[P. A. Baikov, K. G. Chetyrkin, A. V. Smirnov, V. A. Smirnov, and M. Steinhauser, 09; R. N. Lee, A. V. Smirnov, and V. A. Smirnov, 10; T. Gehrmann, E. W. N. Glover, T. Huber, N. Ikizlerli, and C. Studerus, 10]
- TMD perturbative Soft function S(b)[Y. Li and H. X. Zhu, 16]
- Matching kernel *I*_{qi}[M.-x. Luo, TZY, H. X. Zhu, and Y. J. Zhu, 19, 20; M. A. Ebert, B. Mistlberger, and G. Vita, 20]

Above q_T^{cut} part, antenna subtraction at NNLO

A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann, J. Currie, and E. W. N. Glover, 05, 07, 13 Structures of NNLO cross sections

$$d\sigma_{V+J}^{(2)} = \int_{d\Phi_{V+J+2J}} \left(d\sigma_{\mathsf{NNLO}}^{\mathsf{RR}} - d\sigma_{\mathsf{NNLO}}^{\mathsf{S}} \right) \\ + \int_{d\Phi_{V+J+J}} \left(d\sigma_{\mathsf{NNLO}}^{\mathsf{RV}} - d\sigma_{\mathsf{NNLO}}^{\mathsf{T}} \right) \\ + \int_{d\Phi_{V+J}} \left(d\sigma_{\mathsf{NNLO}}^{\mathsf{VV}} - d\sigma_{\mathsf{NNLO}}^{\mathsf{U}} \right) \\ + \left[\int_{d\Phi_{V+J+2J}} d\sigma_{\mathsf{NNLO}}^{\mathsf{S}} + \int_{d\Phi_{V+J+J}} d\sigma_{\mathsf{NNLO}}^{\mathsf{T}} + \int_{d\Phi_{V+J}} d\sigma_{\mathsf{NNLO}}^{\mathsf{U}} \right]$$

- Carefully design proper subtraction terms $\sigma^{S},\,\sigma^{T},\,\sigma^{U}$
- The first three lines suitable for numerical evaluation at D=4
- Calculate the last line analytically for factorized phase spaces

Total cross section and rapidity distributions at LHC

Computational setup

- No fiducial cuts on the decay products
- G_{μ} EW scheme: values taken from 2020 PDG: $M_Z = 91.1876$ GeV, $\Gamma_Z = 2.4952$ GeV, $M_W = 80.379$ GeV, $\Gamma_W = 2.085$ GeV, $G_F = 1.1663787 \times 10^{-5}$

•
$$m_e = m_\mu = 0, \alpha_s(m_Z) = 0.118$$

- Q = 100 GeV for γ^* production (mainly for validation)
- $Q\in [0,\infty]$ for W^\pm
- Uncertainties from seven-point scale variations with central scale $\mu_r=\mu_f=Q$
- Unit CKM matrix for LHC process
- Use central values of PDF sets, not including PDF uncertainties

Self-check within q_T subtraction method: q_T distribution

$$Q = 100 \text{GeV}, \ (d\sigma_V/dq_T)_{N^3 \text{LO}} = Q/q_T \left[\sum_{i=0}^5 A_i \ln^i (q_T/Q) + \mathcal{O}(q_T/Q) \right]$$

Non-singular contribution tends to zero in the limit of $q_T
ightarrow 0$

Validation for $\gamma^*:$ cross check to the analytic cross section

- Check by different partonic channels, agree well with the analytic results [DDM, 20]
- Large cancellations among different partonic channels

Validation for γ^* : cross check to the analytic cross section

• Large logarithms as a function of q_T^{cut}

$$\int_0^{q_T^{\mathsf{cut}}} dq_T (d\sigma_V/dq_T) = \sum_{i=0}^6 B_i \ln^i (q_T^{\mathsf{cut}}/Q) + \mathcal{O}((q_T^{\mathsf{cut}}/Q)^2)$$

• Total cross section with N³LO only

$q_T^{cut}(GeV)$	SCET(fb)	NNLOJET(fb)	combined(fb)	analytic(fb)
0.5	177.37(10)	-185.40(41)	-8.02(42)	-8.03
0.63	169.12(8)	-177.08(35)	-7.96(36)	[DDM]

- Large cancellations between SCET and NNLOJET
- Uncertainties are enhanced by a factor of 20, 0.25% accuracy $\rightarrow 5\%$ fluctuation
- Non-trivial cancellations precisely reproduce the analytic results
- The situation can be improved by including sub-leading power correction

Validation for W production: calculate the cross section

• $0 \le Q \le 13$ TeV

- Reaching a plateau when going to a small $q_T^{\rm cut}$
- Large cancellations among different partonic channels

Rapidity distribution of γ^* production at N³LO

- Q = 100 GeV
- q_T^{cut} dependence is smaller than the numerical error
- Large corrections from NNLO to N3LO
- $K_{N^3LO/NNLO} \simeq 0.98$

The scale band at N³LO is outside of the band at NNLO Due to the missing N³LO PDF?

DY production

Rapidity distribution of W production at N³LO

- LO: $u\bar{d} \rightarrow W^+$
- $0 \le Q \le 13$ TeV
- $K_{N^3LO/NNLO} \simeq 0.98$

- LO: $d \bar{u}
 ightarrow W^-$
- $0 \le Q \le 13$ TeV
- $K_{N^3LO/NNLO} \simeq 0.98$

Since $f_u > f_d$, the W^+ bosons tend to be produced at larger |y| compared to W^- .

Explore scale uncertainty for W^+ production at N³LO

- Fixing $\mu_R = Q$, varying μ_F
- μ_F uncertainty reduces

- Fixing $\mu_F = Q$, varying μ_R
- μ_R uncertainty is enhanced from NNI O to N³I O
- Accidentally small uncertainty at NNLO due to large cancellations among different partonic channels

NNLO

NBLO

Transverse mass distribution at LHC and Tevatron

Computational setup

- Inclusive setup: same as rapidity distribution
- CDFII fiducial cuts: $\sqrt{s} = 1.96 \text{ TeV}, \ p_T^W < 15 \text{ GeV}, |\eta_l| < 1, \ p_T^{l/\nu} \in [30, 55] \text{ GeV}, \ m_T^W \in [60, 100] \text{ GeV}$
- LHC: unit CKM matrix
- Tevatron: 2-generation quark mixing (Cabbibo mixing)

Unit CKM vs 2-generation CKM

LHC: 0.2% difference

Tevatron: 2% difference

Transverse mass distribution at LHC

- Small correction for normalized distribution
- NLO-based template fits tend to produce a slightly larger M_W to compenstate missing NNLO corrections

Tong-Zhi Yang (University of Zurich)

DY production

Normalized transverse mass distribution at Tevatron

Inclusive setup (bin = 5 GeV)

CDFII fiducial region (bin = 2 GeV)

The sensitivity on M_W to the peak of m_T^W distribution

- The peak region is sensentive on M_{W}
- Γ_W only affects the distribution above the peak region
- Estimate ΔM_W due to N3LO corrections by the first bin of peak region
- M_W (CDFII) M_W (PDG)= 80433- 80379 =54 MeV
- NNLO M_W (CDFII) -NNLO M_W (PDG) = 3.25%
- N3LO M_W (PDG) -NNLO M_W (PDG) = 0.6%
- $\Delta M_W(\delta \text{N3LO}) = -54 \frac{0.6}{3.25} \simeq -10 \text{ MeV}$

Summary

- \bullet We get the first rapidity and transverse mass distribution for DY at N^3LO in QCD
- $\bullet\,$ The N3LO correction is relevant to a precision of 10 MeV for M_W measurement
- The computation is based on Q_T subtraction generalized to N³LO
 - The below q_T^{cut} part is computed using the LP TMD factorization
 - The above q_T^{cut} part is computed using NNLOJET
- For validation, we independently recover the known inclusive cross section
- Including the Q_T sub-leading power corrections in the future can further improve the precision and computational efficiency

Thank you!

Backup

Definition of TMD beam function

TMD beam function

$${\cal B}_{q/N}(z,oldsymbol{b}) = \int {db_-\over 2\pi} \, e^{-izb_-ar n\cdot P} \langle N(P)|ar\chi_n(0,b_-,oldsymbol{b}) {ar n\over 2} \chi_n(0)|N(P)
angle$$

Collinear Wilson line

$$\chi_n = W_n^{\dagger} \xi_n, W_n^{\dagger}(x) = \overline{\mathcal{P}} \exp\left(-ig_s \int_{-\infty}^0 ds \bar{n} \cdot A(x+s\bar{n})\right)$$

Need standard QCD as well as effective eikonal Feynman rules

Analytic computation of TMD beam function at N³LO

- M.-x. Luo, TZY, H. X. Zhu, Y. J. Zhu [P.R.L. 124 (2020) 9, 092001, JHEP 06 (2021) 115] • Rapidity divergence and rapidity regulator τ
 - Non-standard Feynman propagators and IBP identities

$$\begin{split} 0 &= \int d^d q \, \frac{\partial}{\partial q^{\mu}} \bigg[e^{-b_0 \tau \frac{P \cdot K}{\bar{n} \cdot P}} F(\{\tilde{l}\}) \bigg] \\ &= \begin{cases} \int d^d q \, e^{-b_0 \tau \frac{P \cdot K}{\bar{n} \cdot P}} \left[-b_0 \tau \frac{P_{\mu}}{\bar{n} \cdot P} + \frac{\partial}{\partial q^{\mu}} \right] F(\{\tilde{l}\}) \,, & q = K \,, \\ \int d^d q \, e^{-b_0 \tau \frac{P \cdot K}{\bar{n} \cdot P}} \frac{\partial}{\partial q^{\mu}} F(\{\tilde{l}\}) \,, & q \neq K \,, \end{cases} \end{split}$$

• Expansion of differential equation (DE) in the limit au
ightarrow 0

$$f_i(z, au,\epsilon) \stackrel{ au o 0}{=} \sum_j \sum_n \sum_{k=0} g_i^{(j,n,k)}(z,\epsilon) au^{j+n\epsilon} \ln^k au$$

Single variable DE with momentum fraction z: $d\vec{g}/(dz) = A(z,\epsilon)\vec{g}$

• The final results are in terms of the well-understood harmonic polylogrithms (HPLs)

Computation parameters for γ^{\ast} production

- Focus on the off-shell photon case
- Center of mass energy $\sqrt{s} = 13 \text{TeV}$
- Fix invariant mass $Q = 100~{\rm GeV}$ and without including fiducial cuts
- PDF set: PDF4LHC15_nnlo_mc with central member
- Fixed α_{QED} value: $\alpha_{\text{QED}}(0) = 1/137.035999139$
- $\alpha_S(m_Z) = 0.118$ with scale variation values calculated from LHAPDF
- Seven-point scale variations

$$\begin{aligned} \mu_r &= 0.5Q, \quad \mu_f = 0.5Q, 1.0Q \\ \mu_r &= 1.0Q, \quad \mu_f = 0.5Q, 1.0Q, 2.0Q \\ \mu_r &= 2.0Q, \quad \mu_f = 1.0Q, 2.0Q \end{aligned}$$

 Parameters are identical to the DDM study[C. Duhr, F. Dulat, and B. Mistlberger, 2020]

Explore the uncertainties from scale variation

• Fix μ_F , vary the μ_R from 0.5Q to 2Q, the scale uncertainty reduces

[C. Duhr, F. Dulat, and B. Mistlberger, 2020]

Explore the uncertainties from scale variation

• Fix μ_R , vary the μ_F from 0.5Q to 2Q, the scale band becomes wider

[C. Duhr, F. Dulat, and B. Mistlberger, 2020]

Validation for γ^* : cross check to the analytic cross section

• Large logarithms as a function of q_T^{cut}

$$\int_0^{q_T^{\mathsf{cut}}} dq_T (d\sigma_{\gamma^*}/dq_T) = \sum_{i=0}^6 B_i \ln^i (q_T^{\mathsf{cut}}/Q) + \mathcal{O}((q_T^{\mathsf{cut}}/Q)^2)$$

• Total cross section with N³LO only

$q_T^{cut}(GeV)$	SCET(fb)	NNLOJET(fb)	combined(fb)	analytic(fb)
0.5	177.37(10)	-185.40(41)	-8.02(42)	
0.63	169.12(8)	-177.08(35)	-7.96(36)	-8.03
0.79	152.96(7)	-161.28(30)	-8.31(31)	[DDM]
1	132.15(6)	-140.47(26)	-8.32(27)	

- Large cancellations between SCET and NNLOJET
- Uncertainties are enhanced by a factor of 20, 0.25% accuracy $\rightarrow 5\%$ fluctuation
- Non-trivial cancellations precisely reproduce the analytic results

Contributions from partonic channels at different orders

Use the same parameters as for the main slides

Channels	LO	δNLO	δNNLO	$\delta N^3 LO$
qg	0	-46.43	-29.97	-15.29
$q\bar{q} + q\bar{Q}$	339.62	98.06	25.76	4.97
gg	0	0	2.33	2.12
qq + qQ	0	0	0.74	0.17
Total	339.62	51.63	-1.14	-8.03

- Due to large cancellations among different channels, it seems that the perturbation theory is not convergent for total cross sections
- For each partonic channel, the perturbation theory is convergent

Charge asymmetry of W bosons at N³LO

$$A_W(y) = \frac{d\sigma_{W^+}/dy - d\sigma_{W^-}/dy}{d\sigma_{W^+}/dy + d\sigma_{W^-}/dy}$$

Luminosity uncertainty cancels out in the ratio, the experimental measurement for this observable is very precise.

Tong-Zhi Yang (University of Zurich)

Explore scale uncertainty for W^+ production at N³LO

- Fixing $\mu_R = Q$, varying μ_F
- μ_F uncertainty reduces

- Fixing $\mu_F = Q$, varying μ_R
- μ_R uncertainty is enhanced from NNI O to N³I O
- Accidentally small uncertainty at NNLO due to large cancellations among different partonic channels

NNLO

NBLO

Factorization scale uncertainty for a fixed μ_R

Renormalization scale uncertainty for a fixed μ_F

