Search for $\chi_{cJ} \to \Lambda \overline{\Lambda} \varphi$

Yueming Shen¹, Lin Zhu¹, Qingping Ji¹, Zhiyong Wang²

¹ HNNU, ² IHEP

HFP Group Meeting, April. 18th, 2022

Outline

- **≻**Motivation
- ➤ Data Sample
- > Event selection
- ➤ Background analysis
- >Intermediate state
- >Systematic uncertainty
- **>**Summary

Motivation

- a) Search for the potential excited baryons, refer to $\psi(3686) \to \Lambda \overline{\Lambda} \eta$ [1] and $\psi(3686) \to \Lambda \overline{\Lambda} \omega$ [2]
- b) Search for the threshold enhancement in $M_{B\overline{B}}$, refer to $\psi(3686) \rightarrow \Lambda \overline{\Lambda} \omega$ [2] and $\psi(3686) \rightarrow \Lambda \overline{\Lambda} \varphi$ [3]
- c) Recently, $\chi_{cJ} \to B\overline{B}P$ ($\chi_{cJ} \to \Lambda\overline{\Lambda}\eta$) are observed at BESIII [4], Similarly, Search for $\chi_{cJ} \to B\overline{B}V$ decays, such as $\chi_{cJ} \to \Lambda\overline{\Lambda}\phi$, is interested

[2] $\psi(3686) \rightarrow \Lambda \overline{\Lambda} \omega$

- [1] BAM-00538: Measurement of psi(3686)->eta/pi0 Lambda Lambdabar, by Shi Wang et al.
- [2] BAM-00336, Honghong Zhang et al., Study of Psi' to omega Labamda Lambdabar.
- [3] BAM-00421: Observation of psi(3686)->phi Lambda Lambda-bar decay, by Aonan Zhu et al.
- [4] BAM-00496: Observation of chicJ-> eta Lambda Lambda-bar decay, by Yijia Zeng et al.

Data samples

Data set	Number of events	BOSS version
09+12 ψ(3686) data	$\begin{array}{c} 4.5 \times 10^8 \\ \sim 2.3 \times 10^9 \end{array}$ \rightarrow \tau \cdot 2.8 \text{Billion}	6.6.4.p03
2021 ψ(3686) data	$\sim 2.3 \times 10^9$	707p01
$09+12 \psi(3686)$ inclusive MC	5.06×10^{8}	6.6.4.p03
2021 ψ(3686) inclusive MC	5× 10 ⁸	707p01
PHSP MC	0.5 million for each channel (09+12) 2.5 million for each channel (2021)	6.6.4.p03 707p01

Event selection

Charged tracks

- $|\cos\theta| < 0.93$
- No vertex constraint
- $N \ge 6$, $N_m \ge 3$, $N_p \ge 3$

$\Lambda(\overline{\Lambda})$ reconstruction :

- 2nd vertex fit
- $\Delta_{\min} = \left(M_{p\pi^-} m_{\Lambda}\right)^2 + \left(M_{\bar{p}\pi^+} m_{\bar{\Lambda}}\right)^2 \Rightarrow \Lambda_{\min}, \bar{\Lambda}_{\min}$

Particle identification

- For Kaon:
 - Prob(K) > Prob(p), Prob(K) > Prob(pi)
- $N_{K^+} = N_{K^-} = 1$;
- $|V_z| < 10, |V_{xy}| < 1$

4C-kinematic fit with

$$\psi(3686) \rightarrow \gamma \Lambda \overline{\Lambda} K^+ K^-$$

- > Additional 4C kinematic
 - for $2\gamma\Lambda\bar{\Lambda}K^+K^-$ final states.

Good photon

- $0 \le TDC \le 14$
- Barrel: $E > 0.025 \text{ GeV}, |\cos \theta| < 0.8$
- End cap : E > 0.050 GeV, $0.86 < |\cos\theta| < 0.92$
- $N_{\gamma} \geq 1$

Further Event selection: 4C kinematic fit

Final event selection:

- $\chi_{4c}^2(\gamma \bar{p} p^- K^+ K^- \pi^+ \pi^-) < 60$
- $\chi_{4c}^2(\gamma \bar{p} p^- K^+ K^- \pi^+ \pi^-) < \chi_{4c}^2 (2\gamma \bar{p} p^- K^+ K^- \pi^+ \pi^-)$

Further Event selection: Decay length

Final event selection:

- lengh1>0
- lengh2>0

Further Event selection: $M(\Lambda)$ & scatter plot: $M(\overline{p}\pi^+)$ $v.s.M(p\pi^-)$

Further Event selection: Mass window of ϕ


```
\phi Signal region:

|M(K^+K^-) - m(\phi)| < 0.018 \text{ GeV/c}^2
\phi Sideband region:

1.055 < M(K^+K^-) < 1...127 \text{ GeV/c}^2
```

We fit the mass spectrum of K^+K^- , $\sigma=6.07$ MeV. And a sideband region is selected. Details can be found in the backup.

Further Event selection: $M(\Lambda K)$ & scatter plot: $M(\bar{\Lambda}K^+) v.s.M(\Lambda K^-)$

■ Veto on $\chi_{cJ} \to \Omega^{-}\overline{\Omega}^{+}$: ! $(|M(\Lambda K^{-}) - m(\Omega^{-})| < 12 \text{ MeV/c}^{2}$. & $|M(\overline{\Lambda} K^{+}) - m(\overline{\Omega}^{+})| < 12 \text{ MeV/c}^{2}$)

• After the above event selection, the reconstruction efficiency for $\chi_{c0,1,2}\to\Lambda\overline{\Lambda}\varphi \text{ is estimated to be:}$

0.3%, 1.2% and 1.65%, respectively

Background study

Table 1: Decay trees and their respective final states.

rowNo	decay tree	decay final state	iDcyTr	nEtr	nCEtr
1	$\psi' \to \chi_{c2} \gamma, \chi_{c2} \to \phi \Lambda \bar{\Lambda}, \phi \to K^+ K^-, \Lambda \to \pi^- p, \bar{\Lambda} \to \pi^+ \bar{p}$	$\pi^+\pi^-K^+K^-p\bar{p}\gamma$	0	232	232
2	$\psi' \to \chi_{c1} \gamma, \chi_{c1} \to \phi \Lambda \bar{\Lambda}, \phi \to K^+ K^-, \Lambda \to \pi^- p, \bar{\Lambda} \to \pi^+ \bar{p}$	$\pi^+\pi^-K^+K^-p\bar{p}\gamma$	1	110	342
3	$\psi' \to \chi_{c0} \gamma, \chi_{c0} \to \phi \Lambda \bar{\Lambda}, \phi \to K^+ K^-, \Lambda \to \pi^- p, \bar{\Lambda} \to \pi^+ \bar{p}$	$\pi^+\pi^-K^+K^-p\bar{p}\gamma$	2	30	372
4	$\psi' \to \phi \Lambda \bar{\Sigma}^0, \phi \to K^+ K^-, \Lambda \to \pi^- p, \bar{\Sigma}^0 \to \bar{\Lambda} \gamma, \bar{\Lambda} \to \pi^+ \bar{p}$	$\pi^+\pi^-K^+K^-p\bar{p}\gamma$	4	8	380
5	$\psi' \to \phi \Lambda \bar{\Lambda}, \phi \to K^+ K^-, \Lambda \to \pi^- p, \bar{\Lambda} \to \pi^+ \bar{p}$	$\pi^{+}\pi^{-}K^{+}K^{-}p\bar{p}$	5	6	386
6	$\psi' \to \phi \bar{\Lambda} \Sigma^0, \phi \to K^+ K^-, \bar{\Lambda} \to \pi^+ \bar{p}, \Sigma^0 \to \Lambda \gamma, \Lambda \to \pi^+ p$	$\pi^+\pi^-K^+K^-p\bar{p}\gamma$	3	4	390

Signal Channel

To investigate possible background from continuum processes, the same selection criteria are applied to a data sample of collected at $\sqrt{s} = 3.65$ GeV. No events survived from the data at 3.65 GeV.

Background study

Signal region normalization: 25.6% Sideband region normalization: 50.7% normalization factor:

$$f_{\phi} = 25.6\% / 50.7\% = 0.51$$

Dalitz Plot (I)

$\overline{\ln \chi_{c1}}$ mass region

Dalitz Plot (II)

$in \chi_{c2}$ mass region

Fit to data

Mode	N ^{obs}	ε(%)	$\mathfrak{B}(imes \mathbf{10^{-5}})$	Significance(σ)
$\chi_{c0} \to \varphi \Lambda \overline{\Lambda}$	4.6±2.3	0.3	~2.29	>5.5
$\chi_{c1} \to \varphi \Lambda \overline{\Lambda}$	47.3±7.4	1.2	~7.28	10.9
$\chi_{c2} \to \varphi \Lambda \overline{\Lambda}$	82.8±9.8	1.7	~8.46	14.1

$$\mathcal{B}\left(\chi_{cJ} \to \Lambda \overline{\Lambda} \varphi\right) = \frac{N_{\chi_{cJ}}^{obs}}{N_{\psi(3686)}^{tot} \cdot \mathcal{B}\left(\psi(3686) \to \gamma \chi_{cJ}\right) \cdot \mathcal{B}(\Lambda \to p\pi^{-}) \cdot \mathcal{B}(\overline{\Lambda} \to \overline{p}\pi^{+}) \cdot \mathcal{B}(\varphi \to K^{+}K^{-}) \cdot \varepsilon_{\chi_{cJ}}}$$

For the decay of $\chi_{cJ\to\Lambda\bar{\Lambda}\,\varphi}$ (φ sideband region), the fitting function is described as below:

$$N_{I}^{obs} \cdot SDMCShape^{I} + N_{I}^{bkg} \cdot BkgMCShape^{I}$$

- For the decay of $\chi_{cJ \to \Lambda \overline{\Lambda} \varphi}$ (φ signal region), the fitting function is described as below: $N_{\chi cJ}^{obs} \cdot SigMCShape \otimes Gauss + f_{\varphi} \cdot N_I^{obs} \cdot SDMCShape^{II} + N_{II}^{bkg} \cdot BkgMCShape^{II}$
 - The SDMCShape is the MC-simulated shape of decay $\psi(3686) \rightarrow \gamma \chi_{cJ}$, $\chi_{cJ} \rightarrow \Lambda \overline{\Lambda} K^+ K^-$
 - The BkgMCShape is the MC-simulated shape of decay $\psi(3686) \rightarrow \gamma \Lambda \overline{\Lambda} \phi$
 - N_I^{obs} is fixed according to the previous fitting of the sideband region.
 - Assume that $N_{\psi(3686)}^{\text{data}} = 2.8 \text{ Billion}$

Determining the statistical significance of χ_{c0}

Assuming that the numbers of total events (\mathbf{n}) in χ_{c0} signal region , $\mathbf{n} = \mathbf{s} + \mathbf{b}$, \mathbf{s} and \mathbf{b} are denote signal and background, respectively. The probability distribution is expressed as

$$\mathbf{P}(n;s,b) = \frac{(s+b)^n}{n!}e^{-(s+b)},$$

- If taking 2σ width as the signal region, we have $\mathbf{n} = 5$, $\mathbf{b} = 0.03$, and $\mathbf{s} = \lfloor \mathbf{n} \mathbf{b} \rfloor \approx 4$. Suppose $\mathbf{s} = 0$, P-value= 4.06×10^{-9} . The statistical significance is 5.5σ .
- Therefore, the statistical significance of $\chi_{c0} \to \Lambda \overline{\Lambda} \varphi$ is not less than 5.5 σ .

Systematic uncertainty [I]

- I. Total number of $\psi(3686)^{6}$
- II. Tracking Efficiency and Photon Detection efficiency
- III. PID^[Z]
- IV. Mass window: The main Background comes from decay $\chi_{cJ} \rightarrow \Omega^{-}\overline{\Omega}^{+}$, ϕ mass window and $\Lambda(\overline{\Lambda})$ mass window.
 - ➤ The systematic error of the above mass window is obtained by changing the interval comparison of the mass window.

V. ϕ sideband

 \triangleright The systematic error of ϕ sideband is obtained by changing the sideband region (changing the multiple of signal region).

- **VI. Kinematic fit**: Two control samples are employed to study the systematic error due to 4-C kinematic fit, the are $\psi(3686) \to \pi^+\pi^- J/\psi$, $J/\psi \to \Lambda \overline{\Lambda}$ and $\psi(3686) \to \eta J/\psi$, $J/\psi \to \pi^+\pi^-\Lambda \overline{\Lambda}$.
 - The signal events is extracted once again after imposing the 4-C kinematic fit on the candidate charged and neutral track.

We define the efficiency of 4-C kinematic fit systematic error as below:

$$\epsilon_{4C} = \frac{N_{obs}(with-4Cfit)}{N_{obs}(without-4Cfit)}$$

The difference between data and inclusive MC is found to be systematic uncertainty.

[6] ABLIKIM M, et al. Determination of the number of ψ (3686) events at BESIII[J/OL]. Chin.Phys. C, 2018, 42(2):023001. DOI: 10.1088/1674-1137/42/2/023001

[7] M. Ablikim et al. [BESIII], Phys. Rev. D 83 (2011), 112005

Systematic uncertainty [II]

VIII. Simultaneous fit

- ➤ Signal Shape: We describe the probability density function of the signal by replacing the SigMCShape ⊗ Gauss with SigMCShape, and take the difference between before and after as the systematic error.
- ➤ Background shape: Second order polynomial is used to describe the background shape, and the difference from the original result is taken as the systematic error of this term.
- Fitting range: By changing the fitting range, the one with greatest difference from the original result is taken as the systematic error.

IX. Branching fraction quoted

The uncertainties to the quoted decay branching fraction of the intermediate particles are extracted from the PDG.

Systematic uncertainty [III]

mode	$\chi_{c0} ightarrow \Lambda \overline{\Lambda} \Phi$	$\chi_{c1} ightarrow \Lambda \overline{\Lambda} \phi$	$\chi_{c2} ightarrow \Lambda \overline{\Lambda} \phi$
$oldsymbol{\Omega}$ mass window	21%	0.8%	0.6%
ϕ mass window	11.3%	3.3%	0.8%
$\Lambda(\overline{\Lambda})$ mass window	4.5%	1.3%	0.4%
ϕ sideband	0.7%	1.3%	3.8%
Fit	4.9%	2.5%	2.4%
Kaon PID	2%	2%	2%
Tracking for Kaon	2%	2%	2%
Detection for proton	2%	2%	2%
Kinematic fit	1.28%	1.28%	1.28%
Branching fraction quoted (from PDG)	2.5%	2.9%	2.6%
The total number of $\psi(3686)$	0.6%	0.6%	0.6%
Total	25.2%	6.6%	6.5%

Summary & Next to do

Using about ~2.8 billion $\psi(3686)$ data sample collected at BESIII in 2009, 2012 and 2021:

- \checkmark The decay of $\chi_{cl} \to \Lambda \overline{\Lambda} \varphi$ is searched for the **first time**, with full reconstruction.
- ✓ Signal of $\chi_{c1,2} \rightarrow \Lambda \overline{\Lambda} \varphi$ are observed with significance of 10.9 σ and 14.1 σ , respectively.
- ✓ Signal of $\chi_{c0} \rightarrow \Lambda \overline{\Lambda} \phi$ is observed with significance not less than 5.5 σ .
- \checkmark No obvious structure found in the $\Lambda \Phi$ and $\Lambda \overline{\Lambda}$ system.
- ✓ The systematic uncertainty of the decay of $\chi_{c0,1,2} \rightarrow \Lambda \overline{\Lambda} \phi$ is 25.2%, 6.6% and 6.5%, respectively.

Next to do

- \square Systematic uncertainty of $\Lambda(\overline{\Lambda})$ reconstruction.
- Update the systematic uncertainty of tracking efficiency, photon detection efficiency and PID.

Thank
You!
;)

Back up

We fit the mass spectrum of p π^- , $\bar{p}\pi^+$, $\sigma_{p\pi^-}=2.4$ MeV, $\sigma_{\bar{p}\pi^+}=2.6$ MeV

We fit the mass spectrum of K^+K^- , $\sigma = 6.07 MeV$. And a sideband region is selected. $1.055 < M(K^+K^-)_{sideband} < 1.091 GeV/c^2$

Final Event selection:

Final event selection:

- $\chi_{4c}^2(\gamma \bar{p}p^-K^+K^-\pi^+\pi^-) < 60$
- $\chi_{4c}^2(\gamma \bar{p} p^- K^+ K^- \pi^+ \pi^-) < \chi_{4c}^2(2\gamma \bar{p} p^- K^+ K^- \pi^+ \pi^-)$
- lengh1>0 && lengh2>0
- $|M(p\pi^-) m(\Lambda)| < 8 \text{ MeV/c}^2 \&\& |M(\overline{p}\pi^+) m(\overline{\Lambda})| < 8 \text{ MeV/c}^2$

ϕ Signal region:

- $|M(K^+K^-) m(\phi)| < 0.018 \text{ GeV/c}^2$
- ϕ Sideband region:
- $1.055 < M(K^+K^-) < 1.127 \text{ GeV/c}^2$

Veto $\chi_{cI} \rightarrow \Omega^{-} \overline{\Omega}^{+}$:

• $| [|M(\Lambda K^-) - m(\Omega^-)| < 10 \text{ MeV/c}^2 \& |M(\overline{\Lambda} K^+) - m(\overline{\Omega}^+)| < 10 \text{ MeV/c}^2]$

Argus Function *:

$$Argus(m; m_0, c, p) = \begin{cases} 0, & \text{(if } m < m_0) \\ m \cdot u^p \cdot e^{c \cdot u}, & \text{(if } m \ge m_0, u = 1 - (m/m_0)^2) \end{cases}$$

$\chi_{cJ} ightarrow \Omega^- \overline{\Omega}^+$

Back up

Systematic uncertainty of Fit.

Mode	$\chi_{c0} ightarrow \Lambda \overline{\Lambda} \Phi$	$\chi_{c1} ightarrow \Lambda \overline{\Lambda} \Phi$	$\chi_{c2} ightarrow \Lambda \overline{\Lambda} oldsymbol{\varphi}$
Signal shape	2.5%	1.4%	0.26%
Background shape	3.3%	0.4%	1.8%
Fitting range	2.8%	2.1%	1.5%
Fit	4.9%	2.5%	2.4%

Event selection of $\psi \to \eta J/\psi$, $J/\psi \to \Lambda \overline{\Lambda} \pi^+ \pi^-[1]$

- **■** Charge track
- With the same selection criteria as $\psi(3686) \rightarrow \gamma \chi_{cI} \rightarrow \gamma \Lambda \bar{\Lambda}$
- $N_{positive} \ge 3$, $N_{negative} \ge 3$
- **■** Good photon
- $N_{\gamma} \ge 2$
- $\Lambda(\overline{\Lambda})$ reconstruction

Looping over all the combination of positive and negative charged tracks pairs. We require two virtual particle, Λ and $\bar{\Lambda}$ can be reconstructed in this combinations. Then ,the minimum mass deviation is combined (Δ , see previous description) of $\Lambda\bar{\Lambda}$ to selected them.

$$\Delta_{\min} = \left(M_{p\pi^-} - m_{\Lambda}\right)^2 + \left(M_{\bar{p}\pi^+} - m_{\bar{\Lambda}}\right)^2 \Rightarrow \Lambda_{\min}, \bar{\Lambda}_{\min}$$

- \blacksquare η list
 - A kinematic fit is performed on the selected photon pairs by constraining their invariant mass to the η mass.
- \blacksquare π^+ and and π^- (not from Λ or $\overline{\Lambda}$ decay) selection
 - the charged track not belonging to any of $\Lambda(\bar{\Lambda})$ candidates
 - $|V_z| < 10, |V_{xy}| < 1$
- The signal events is extracted once again after imposing the 4-C kinematic fit on the candidate charged and neutral track. We define the efficiency of 4-C kinematic fit systematic error as below:

$$\epsilon_{4C} = \frac{N_{obs}(with-4Cfit)}{N_{obs}(without-4Cfit)}$$

The difference between data and inclusive MC is found to be systematic uncertainty.

Final Event selection of $\psi \to \eta J/\psi$, $J/\psi \to \Lambda \overline{\Lambda} \pi^+ \pi^- [2]$

- lengh1>0
- lengh2>0
- $|M(p\pi^{-}) m(\Lambda)| < 5 \text{ MeV/c}^{2} \&\& |M(\bar{p}\pi^{+}) m(\bar{\Lambda})| < 5 \text{ MeV/c}^{2}$
- $|M(\eta)^{rec} m(J/\psi)| < 0.006 \text{ GeV/c}^2$
- $|M(\pi^+\pi^-)^{\text{rec}} m(J/\psi)| > 0.005 \text{GeV/c}^2$

Table 1: Decay trees and their respective final states.

rowNo	decay tree	decay final state	iDcyTr	nEtr	nCEtr
1	$\psi' \to \eta J/\psi, \eta \to \gamma \gamma, J/\psi \to \pi^+ \pi^- \Lambda \bar{\Lambda}, \Lambda \to \pi^- p, \bar{\Lambda} \to \pi^+ \bar{p}$	$\pi^+\pi^+\pi^-\pi^-p\bar{p}\gamma\gamma$	101	540	540
2	$\begin{array}{l} \psi' \to \eta J/\psi, \eta \to \gamma \gamma, J/\psi \to \Sigma^{*+} \Sigma^{*-}, \Sigma^{*+} \to \pi^+ \Lambda, \bar{\Sigma}^{*-} \to \pi^- \bar{\Lambda}, \\ \Lambda \to \pi^- p, \bar{\Lambda} \to \pi^+ \bar{p} \end{array}$	$\pi^+\pi^+\pi^-\pi^-p\bar{p}\gamma\gamma$	0	243	783
3	$\begin{array}{l} \psi' \to \eta J/\psi, \eta \to \gamma \gamma, J/\psi \to \bar{\Sigma}^{*+} \Sigma^{*-}, \bar{\Sigma}^{*+} \to \pi^+ \bar{\Lambda}, \Sigma^{*-} \to \pi^- \Lambda, \\ \bar{\Lambda} \to \pi^+ \bar{p}, \Lambda \to \pi^- p \end{array}$	$\pi^+\pi^+\pi^-\pi^-p\bar{p}\gamma\gamma$	7	239	1022
4	$\psi' \to \pi^0 \pi^0 J/\psi, J/\psi \to \pi^+ \pi^- \Lambda \bar{\Lambda}, \Lambda \to \pi^- p, \bar{\Lambda} \to \pi^+ \bar{p}$	$\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}p\bar{p}$	201	153	1175
5	$\begin{array}{l} \psi' \to \eta J/\psi, \eta \to \gamma \gamma, J/\psi \to \bar{\Xi}^+ \Xi^-, \bar{\Xi}^+ \to \pi^+ \bar{\Lambda}, \Xi^- \to \pi^- \Lambda, \\ \bar{\Lambda} \to \pi^+ \bar{p}, \Lambda \to \pi^- p \end{array}$	$\pi^+\pi^+\pi^-\pi^-p\bar{p}\gamma\gamma$	11	123	1298
6	$\begin{array}{l} \psi' \to \eta J/\psi, \eta \to \gamma \gamma, J/\psi \to \pi^+ \Sigma^{*-} \bar{\Lambda}, \Sigma^{*-} \to \pi^- \Lambda, \bar{\Lambda} \to \pi^+ \bar{p}, \\ \Lambda \to \pi^- p \end{array}$	$\pi^+\pi^+\pi^-\pi^-p\bar{p}\gamma\gamma$	19	109	1407
7	$\begin{array}{l} \psi' \to \eta J/\psi, \eta \to \gamma \gamma, J/\psi \to \pi^+ \Lambda \bar{\Sigma}^{*-}, \Lambda \to \pi^- p, \bar{\Sigma}^{*-} \to \pi^- \bar{\Lambda}, \\ \bar{\Lambda} \to \pi^+ \bar{p} \end{array}$	$\pi^+\pi^+\pi^-\pi^-p\bar{p}\gamma\gamma$	10	107	1514
8	$\psi' \to \chi_{c1}\gamma, \chi_{c1} \to J/\psi\gamma, J/\psi \to \pi^+\pi^-\Lambda\bar{\Lambda}, \Lambda \to \pi^-p, \bar{\Lambda} \to \pi^+\bar{p}$	$\pi^+\pi^+\pi^-\pi^-p\bar{p}\gamma\gamma$	200	105	1619
9	$\begin{array}{l} \psi' \to \eta J/\psi, \eta \to \gamma \gamma, J/\psi \to \pi^- \bar{\Lambda} \Sigma^{*+}, \bar{\Lambda} \to \pi^+ \bar{p}, \Sigma^{*+} \to \pi^+ \Lambda, \\ \Lambda \to \pi^- p \end{array}$	$\pi^+\pi^+\pi^-\pi^-p\bar{p}\gamma\gamma$	1	100	1719
10	$\begin{array}{l} \psi' \to \eta J/\psi, \eta \to \gamma \gamma, J/\psi \to \pi^- \bar{\Sigma}^{*+} \Lambda, \bar{\Sigma}^{*+} \to \pi^+ \bar{\Lambda}, \Lambda \to \pi^- p, \\ \bar{\Lambda} \to \pi^+ \bar{p} \end{array}$	$\pi^+\pi^+\pi^-\pi^-p\bar{p}\gamma\gamma$	17	92	1811
11	$\begin{array}{l} \psi' \to \pi^0 \pi^0 J/\psi, J/\psi \to \Sigma^{*+} \bar{\Sigma}^{*-}, \Sigma^{*+} \to \pi^+ \Lambda, \bar{\Sigma}^{*-} \to \pi^- \bar{\Lambda}, \Lambda \to \pi^- p, \\ \bar{\Lambda} \to \pi^+ \bar{p} \end{array}$	$\pi^0\pi^0\pi^+\pi^+\pi^-\pi^-p\bar{p}$	3	62	1873
12	$\psi' \to \pi^0 \pi^0 J/\psi, J/\psi \to \bar{\Sigma}^{*+} \Sigma^{*-}, \bar{\Sigma}^{*+} \to \pi^+ \bar{\Lambda}, \Sigma^{*-} \to \pi^- \Lambda, \bar{\Lambda} \to \pi^+ \bar{p}, \Lambda \to \pi^- p$	$\pi^0\pi^0\pi^+\pi^+\pi^-\pi^-p\bar{p}$	4	53	1926
13	$\psi' \to \chi_{c1} \gamma, \chi_{c1} \to J/\psi \gamma, J/\psi \to \Sigma^{*+} \bar{\Sigma}^{*-}, \Sigma^{*+} \to \pi^{+} \Lambda, \Sigma^{*-} \to \pi^{-} \bar{\Lambda}, \Lambda \to \pi^{-} p, \bar{\Lambda} \to \pi^{+} \bar{p}$	$\pi^+\pi^+\pi^-\pi^-p\bar{p}\gamma\gamma$	25	46	1972
14	$\psi' \to \pi^+\pi^- J/\psi, J/\psi \to \eta \Lambda \bar{\Lambda}, \eta \to \gamma \gamma, \Lambda \to \pi^- p, \bar{\Lambda} \to \pi^+ \bar{p}$	$\pi^+\pi^+\pi^-\pi^-p\bar{p}\gamma\gamma$	9	45	2017
15	$\psi' \to \pi^0 \pi^0 J/\psi, J/\psi \to \bar{\Xi}^+ \Xi^-, \bar{\Xi}^+ \to \pi^+ \bar{\Lambda}, \Xi^- \to \pi^- \Lambda, \bar{\Lambda} \to \pi^+ \bar{p}, \Lambda \to \pi^- p$	$\pi^0\pi^0\pi^+\pi^+\pi^-\pi^-p\bar{p}$	6	40	2057
16	$\psi' \to \pi^0 \pi^0 J/\psi, J/\psi \to \pi^+ \Sigma^{*-} \bar{\Lambda}, \Sigma^{*-} \to \pi^- \Lambda, \bar{\Lambda} \to \pi^+ \bar{p}, \Lambda \to \pi^- p$	$\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}p\bar{p}$	14	34	2091
17	$\psi' \to \pi^0 \pi^0 J/\psi, J/\psi \to \pi^- \bar{\Lambda} \Sigma^{*+}, \bar{\Lambda} \to \pi^+ \bar{p}, \Sigma^{*+} \to \pi^+ \Lambda, \Lambda \to \pi^- p$	$\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}p\bar{p}$	59	32	2123
18	$\psi' \to \chi_{c1} \gamma, \chi_{c1} \to J/\psi \gamma, J/\psi \to \Sigma^{*+} \Sigma^{*-}, \Sigma^{*+} \to \pi^+ \bar{\Lambda}, \Sigma^{*-} \to \pi^- \Lambda, \bar{\Lambda} \to \pi^+ \bar{p}, \Lambda \to \pi^- p$	$\pi^+\pi^+\pi^-\pi^-p\bar{p}\gamma\gamma$	36	32	2155
19	$\psi' \to \chi_{c1} \gamma, \chi_{c1} \to J/\psi \gamma, J/\psi \to \bar{\Xi}^+ \Xi^-, \bar{\Xi}^+ \to \pi^+ \bar{\Lambda}, \Xi^- \to \pi^- \Lambda, \bar{\Lambda} \to \pi^+ \bar{p}, \Lambda \to \pi^- p$	$\pi^+\pi^+\pi^-\pi^-p\bar{p}\gamma\gamma$	40	23	2178
20	$\psi' \to \pi^0 \pi^0 J/\psi, J/\psi \to \pi^+ \Lambda \bar{\Sigma}^{*-}, \Lambda \to \pi^- p, \bar{\Sigma}^{*-} \to \pi^- \bar{\Lambda}, \bar{\Lambda} \to \pi^+ \bar{p}$	$\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}p\bar{p}$	53	21	2199
21	$\psi' \to \chi_{c1} \gamma, \chi_{c1} \to J/\psi \gamma, J/\psi \to \pi^- \bar{\Sigma}^{*+} \Lambda, \bar{\Sigma}^{*+} \to \pi^+ \bar{\Lambda}, \Lambda \to \pi^- p, \bar{\Lambda} \to \pi^+ \bar{p}$	$\pi^+\pi^+\pi^-\pi^-p\bar{p}\gamma\gamma$	18	19	2218

scatter plot: $M(\overline{p}\pi^+) v.s.M(p\pi^-)$

Decay length

Final event selection:

lengh2

- lengh1>0
- lengh2>0

Control sample: $\psi \rightarrow \eta J/\psi$, $J/\psi \rightarrow \Lambda \overline{\Lambda} \pi^+ \pi^-$ [3]

$$\chi^2 < 60$$
 , $\epsilon_{5C} = 1.28\%$